Publications

13 Results
Skip to search filters

Trustworthy design architecture: Cyber-physical system

Proceedings - International Carnahan Conference on Security Technology

Choi, Sung N.; Chavez, Adrian R.; Torres, Marcos P.; Kwon, Cheolhyeon; Hwang, Inseok

Conventional cyber defenses require continual maintenance: virus, firmware, and software updates; costly functional impact tests; and dedicated staff within a security operations center. The conventional defenses require access to external sources for the latest updates. The whitelisted system, however, is ideally a system that can sustain itself freed from external inputs. Cyber-Physical Systems (CPS), have the following unique traits: digital commands are physically observable and verifiable; possible combinations of commands are limited and finite. These CPS traits, combined with a trust anchor to secure an unclonable digital identity (i.e., digitally unclonable function [DUF] - Patent Application #15/183,454; CodeLock), offers an excellent opportunity to explore defenses built on whitelisting approach called 'Trustworthy Design Architecture (TDA).' There exist significant research challenges in defining what are the physically verifiable whitelists as well as the criteria for cyber-physical traits that can be used as the unclonable identity. One goal of the project is to identify a set of physical and/or digital characteristics that can uniquely identify an endpoint. The measurements must have the properties of being reliable, reproducible, and trustworthy. Given that adversaries naturally evolve with any defense, the adversary will have the goal of disrupting or spoofing this process. To protect against such disruptions, we provide a unique system engineering technique, when applied to CPSs (e.g., nuclear processing facilities, critical infrastructures), that will sustain a secure operational state without ever needing external information or active inputs from cybersecurity subject-matter experts (i.e., virus updates, IDS scans, patch management, vulnerability updates). We do this by eliminating system dependencies on external sources for protection. Instead, all internal communication is actively sealed and protected with integrity, authenticity and assurance checks that only cyber identities bound to the physical component can deliver. As CPSs continue to advance (i.e., IoTs, drones, ICSs), resilient-maintenance free solutions are needed to neutralize/reduce cyber risks. TDA is a conceptual system engineering framework specifically designed to address cyber-physical systems that can potentially be maintained and operated without the persistent need or demand for vulnerability or security patch updates.

More Details

EMBERS: EpheMeral biometrically enhanced real-time location System

Proceedings - International Carnahan Conference on Security Technology

Choi, Sung N.; Bierma, Michael B.; Choe, Yung R.; Zage, David J.

In nuclear facilities, having efficient accountability of critical assets, personnel locations, and activities is essential for productive, safe, and secure operations. Such accountability tracked through standard manual procedures is highly inefficient and prone to human error. The ability to actively and autonomously monitor both personnel and critical assets can significantly enhance security and safety operations while removing significant levels of human reliability issues and reducing insider threat concerns. A Real-Time Location System (RTLS) encompasses several technologies that use wireless signals to determine the precise location of tagged critical assets or personnel. RTLS systems include tags that either transmit or receive signals at regular intervals, location sensors/beacons that receive/transmit signals, and a location appliance that collects and correlates the data. Combined with ephemeral biometrics (EB) to validate the live-state of a user, an ephemeral biometrically-enhanced RTLS (EMBERS) can eliminate time-consuming manual searches and audits by providing precise location data. If critical assets or people leave a defined secured area, EMBERS can automatically trigger an alert and function as an access control mechanism and/or ingress/egress monitoring tool. Three different EMBERS application scenarios for safety and security have been analyzed and the heuristic results of this study are outlined in this paper along with areas of technological improvements and innovations that can be made if EMBERS is to be used as safety and security tool.

More Details
13 Results
13 Results