Publications

110 Results
Skip to search filters

Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions

Journal of the Electrochemical Society

Preger, Yuliya P.; Barkholtz, Heather M.; Fresquez, Armando J.; Campbell, Daniel L.; Juba, Benjamin W.; Kustas, Jessica K.; Ferreira, Summer R.; Chalamala, Babu C.

Energy storage systems with Li-ion batteries are increasingly deployed to maintain a robust and resilient grid and facilitate the integration of renewable energy resources. However, appropriate selection of cells for different applications is difficult due to limited public data comparing the most commonly used off-the-shelf Li-ion chemistries under the same operating conditions. This article details a multi-year cycling study of commercial LiFePO4 (LFP), LiNixCoyAl1-x-yO2 (NCA), and LiNixMnyCo1-x-yO2 (NMC) cells, varying the discharge rate, depth of discharge (DOD), and environment temperature. The capacity and discharge energy retention, as well as the round-trip efficiency, were compared. Even when operated within manufacturer specifications, the range of cycling conditions had a profound effect on cell degradation, with time to reach 80% capacity varying by thousands of hours and cycle counts among cells of each chemistry. The degradation of cells in this study was compared to that of similar cells in previous studies to identify universal trends and to provide a standard deviation for performance. All cycling files have been made publicly available at batteryarchive.org, a recently developed repository for visualization and comparison of battery data, to facilitate future experimental and modeling efforts.

More Details

Experimental Quantification of Vent Mechanism Flow Parameters in 18650 Format Lithium Ion Batteries

Journal of Fluids Engineering, Transactions of the ASME

Mier, Frank A.; Hargather, Michael J.; Ferreira, Summer R.

Lithium ion batteries have a well-documented tendency to fail energetically under various abuse conditions. These conditions frequently result in decomposition of the electrochemical components within the battery resulting in gas generation and increased internal pressure which can lead to an explosive case rupture. The 18650 format cell incorporates a vent mechanism located within a crimped cap to relieve pressure and mitigate the risk of case rupture. Cell venting, however, introduces additional safety concerns associated with the flow of flammable gases and liquid electrolyte into the environment. Experiments to quantify key parameters are performed to elucidate the external dynamics of battery venting. A first experiment measures the vent burst pressure. Burst vent caps are then tested with a second experimental fixture to measure vent opening area and discharge coefficient during choked-flow venting, which occurs during battery failure. Vent opening area and discharge coefficient are calculated from stagnation temperature, stagnation pressure, and static pressure measurements along with compressible-isentropic flow equations and conservation of mass. Commercially sourced vent caps are used with repeated tests run to quantify repeatability and variability. Validation experiments confirmed accuracy of opening area and discharge coefficient measurement. Further, trials conducted on vent caps from two sources demonstrate the potential for variation between manufacturers.

More Details

Battery energy storage state-of-charge forecasting: Models, optimization, and accuracy

IEEE Transactions on Smart Grid

Rosewater, David M.; Ferreira, Summer R.; Schoenwald, David A.; Hawkins, Jonathan; Santoso, Surya

Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This paper presents three advances in BESS SoC forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational data is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. The proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.

More Details

From calorimetry measurements to furthering mechanistic understanding and control of thermal abuse in lithium-ion cells

Journal of the Electrochemical Society

Shurtz, Randy S.; Preger, Yuliya P.; Torres-Castro, Loraine T.; Lamb, Joshua H.; Hewson, John C.; Ferreira, Summer R.

Lithium-ion battery safety is prerequisite for applications from consumer electronics to grid energy storage. Cell and component-level calorimetry studies are central to safety evaluations. Qualitative empirical comparisons have been indispensable in understanding decomposition behavior. More systematic calorimetry studies along with more comprehensive measurements and reporting can lead to more quantitative mechanistic understanding. This mechanistic understanding can facilitate improved designs and predictions for scenarios that are difficult to access experimentally, such as system-level failures. Recommendations are made to improve usability of calorimetry results in mechanistic understanding. From our perspective, this path leads to a more mature science of battery safety.

More Details

Nanoparticle Alloy Formation by Radiolysis

Journal of Physical Chemistry C

Grand, J.; Ferreira, Summer R.; De Waele, V.; Mintova, S.; Nenoff, T.M.

This Review Article focuses on the highly versatile and effective method of radiolysis for the synthesis of nanoparticles (NPs). In particular, the formation of bimetallic and alloyed nanoparticles (or nanoalloys), including both known super alloys and novel alloy NP compositions, is described. This Review Article discloses the synthesis techniques that rely on ionizing radiation sources to create metallic NPs. Then, alloy NPs formed from combinations of transition metals and noble metals with varied structures are described. Some of the advantages of radiolysis including exquisite control over the size, monodispersity, and alloying structure of NPs are discussed. Additionally, methodologies that facilitate the synthesis or deposition of NPs onto a range of supports under inert environments are described. Finally, applications of metallic NPs formed by radiolysis are summarized.

More Details

A database for comparative electrochemical performance of commercial 18650-format lithium-ion cells

Journal of the Electrochemical Society

Barkholtz, Heather B.; Fresquez, Armando J.; Chalamala, Babu C.; Ferreira, Summer R.

Lithium-ion batteries are a central technology to our daily lives with widespread use in mobile devices and electric vehicles. These batteries are also beginning to be widely used in electric grid infrastructure support applications which have stringent safety and reliability requirements. Typically, electrochemical performance data is not available for modelers to validate their simulations, mechanisms, and algorithms for lithium-ion battery performance and lifetime. In this paper, we report on the electrochemical performance of commercial 18650 cells at a variety of temperatures and discharge currents. We found that LiFePO4 is temperature tolerant for discharge currents at or below 10 A whereas LiCoO2, LiNixCoyAl1-x-yO2, and LiNi0.80Mn0.15Co0.05O2 exhibited optimal electrochemical performance when the temperature is maintained at 15â—¦C. LiNixCoyAl1-x-yO2 showed signs of lithium plating at lower temperatures, evidenced by irreversible capacity loss and emergence of a high-voltage differential capacity peak. Furthermore, all cells need to be monitored for self-heating, as environment temperature and high discharge currents may elicit an unintended abuse condition. Overall, this study shows that lithium-ion batteries are highly application-specific and electrochemical behavior must be well understood for safe and reliable operation. Additionally, data collected in this study is available for anyone to download for further analysis and model validation.

More Details

Understanding function and performance of carbon additives in lead-acid batteries

Journal of the Electrochemical Society

Enos, David E.; Ferreira, Summer R.; Barkholtz, Heather B.; Baca, W.; Fenstermacher, S.

While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through which this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.

More Details

Development of a frequency regulation duty-cycle for standardized energy storage performance testing

Journal of Energy Storage

Rosewater, David M.; Ferreira, Summer R.

The US DOE Protocol for uniformly measuring and expressing the performance of energy storage systems, first developed in 2012 through inclusive working group activities, provides standardized methodologies for evaluating an energy storage system's ability to supply specific services to electrical grids. This article elaborates on the data and decisions behind the duty-cycle used for frequency regulation in this protocol. Analysis of a year of publicly available frequency regulation control signal data from a utility was considered in developing the representative signal for this use case. This showed that signal standard deviation can be used as a metric for aggressiveness or rigor. From these data, we select representative 2 h long signals that exhibit nearly all of dynamics of actual usage under two distinct regimens, one for average use and the other for highly aggressive use. These results were combined into a 24-h duty-cycle comprised of average and aggressive segments. The benefits and drawbacks of the selected duty-cycle are discussed along with its potential implications to the energy storage industry.

More Details

Selected Test Results from the Encell Technology Nickel Iron Battery

Ferreira, Summer R.; Baca, Wes E.; Avedikian, Kristan A.

The performance of the Encell Nickel Iron (NiFe) battery was measured. Tests included capacity, capacity as a function of rate, capacity as a function of temperature, charge retention (28-day), efficiency, accelerated life projection, and water refill evaluation. The goal of this work was to evaluate the general performance of the Encell NiFe battery technology for stationary applications and demonstrate the chemistry's capabilities in extreme conditions. Test results have indicated that the Encell NiFe battery technology can provide power levels up to the 6C discharge rate, ampere-hour efficiency above 70%. In summary, the Encell batteries have met performance metrics established by the manufacturer. Long-term cycle tests are not included in this report. A cycle test at elevated temperature was run, funded by the manufacturer, which Encell uses to predict long-term cycling performance, and which passed their prescribed metrics.

More Details

Protocol for uniformly measuring and expressing the performance of energy storage systems

Ferreira, Summer R.; Rosewater, David M.; Schoenwald, David A.

The U.S. Department of Energys Energy Storage Systems (ESS) Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL), facilitated the development of the protocol provided in this report. The focus of the protocol is to provide a uniform way of measuring, quantifying, and reporting the performance of ESSs in various applications; something that does not exist today and, as such, is hampering the consideration and use of this technology in the market. The availability of an application-specific protocol for use in measuring and expressing performance-related metrics of ESSs will allow technology developers, power-grid operators and other end-users to evaluate the performance of energy storage technologies on a uniform and comparable basis. This will help differentiate technologies and products for specific application(s) and provide transparency in how performance is measured. It also will assist utilities and other consumers of ESSs to make more informed decisions as they consider the potential application and use of ESSs, as well as form the basis for documentation that might be required to justify utility investment in such technologies.

More Details

Postdoctoral program guidelines

Biedermann, Laura B.; Teich-McGoldrick, Stephanie T.; Cruz-Campa, Jose L.; Ekoto, Isaac W.; Ferreira, Summer R.; Hall, Lisa M.; Liu, Xiaohua L.; Liu, Yanli L.; Sava Gallis, Dorina F.

We, the Postdoc Professional Development Program (PD2P) leadership team, wrote these postdoc guidelines to be a starting point for communication between new postdocs, their staff mentors, and their managers. These guidelines detail expectations and responsibilities of the three parties, as well as list relevant contacts. The purpose of the Postdoc Program is to bring in talented, creative people who enrich Sandia's environment by performing innovative R&D, as well as by stimulating intellectual curiosity and learning. Postdocs are temporary employees who come to Sandia for career development and advancement reasons. In general, the postdoc term is 1 year, renewable up to five times for a total of six years. However, center practices may vary; check with your manager. At term, a postdoc may apply for a staff position at Sandia or choose to move to university, industry or another lab. It is our vision that those who leave become long-term collaborators and advocates whose relationships with Sandia have a positive effect upon our national constituency.

More Details

Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1

Ferreira, Summer R.

In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

More Details

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011)

Enos, David E.; Ferreira, Summer R.

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has also been added directly to traditional VRLA batteries as an admixture in both the positive and negative plates, the latter of which has been found to result in similar improvements to battery performance under high-rate partial-state-of-charge (HRPSoC) operation. It is this latter construction, where carbon is added directly to the negative active material (NAM) that is the specific incarnation being evaluated through this program. Thus, the carbon-modified (or Pb-C) battery (termed the 'Advanced' VRLA battery by East Penn Manufacturing) is a traditional VRLA battery where an additional component has been added to the negative electrode during production of the negative plate. The addition of select carbon materials to the NAM of VRLA batteries has been demonstrated to increase cycle life by an order of magnitude or more under (HRPSoC) operation. Additionally, battery capacity increases on cycling and, in fact, exceeds the performance of the batteries when new.

More Details

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011)

Enos, David E.; Ferreira, Summer R.

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

More Details

Probing the effect of electron acceptor structure and morphology on charge separation in ZnO/P3HT hybrid photovoltaics using steady-state transient photoinduced absorption

Hsu, Julia W.; Ferreira, Summer R.; Lee, Yun-Ju L.

Hybrid cells based on ZnO/P3HT heterojunctions have the advantage of better device stability, but suffer poor photovoltaic performance compared to all-organic cells which use PCBM as the electron acceptor. The photovoltaic effect in these hybrid systems is accomplished via photoinduced charge separation at the interface between the absorbing polymer (P3HT) and the electron acceptor (ZnO). Efforts to improve device performance in these hybrid systems have centered on reducing the required diffusion length for P3HT excitons by creating bulk heterojunctions from either ZnO nanoparticles and P3HT or using ZnO precursors which convert in situ to form ZnO networks inside a polymer matrix. In this study, we use transient photoinduced absorption to access the lifetimes of P3HT polarons and excitons in bulk heterojunctions constructed using P3HT and ZnO nanoparticles or ZnO precursors and compare to those in planar ZnO/P3HT devices. Steady-state photoinduced absorption spectra of ZnO/P3HT show characteristic of sub-bandgap transitions associated with the formation of long-lived (msec lifetimes) radical cations (polarons) in P3HT. Similar short-lived polarons (psec lifetimes) are observed by picosecond transient photoinduced absorption in addition to infrared absorption due to excitons. Here we examine the lifetimes of both the excitons and polarons in ZnO:P3HT bulk heterojunctions using both picosecond and millisecond techniques in an effort to understand the effect of the structure and morphology of the electron acceptor on charge separation. We will also compare the relative photoexitation lifetimes, hence charge separation efficiency, for the planar and bulk heterojunction hybrid system to an all-organic P3HT:PCBM system.

More Details
110 Results
110 Results