We report translating the surging interest in neuromorphic electronic components, such as those based on nonlinearities near Mott transitions, into large-scale commercial deployment faces steep challenges in the current lack of means to identify and design key material parameters. These issues are exemplified by the difficulties in connecting measurable material properties to device behavior via circuit element models. Here, the principle of local activity is used to build a model of VO2/SiN Mott threshold switches by sequentially accounting for constraints from a minimal set of quasistatic and dynamic electrical and high-spatial-resolution thermal data obtained via in situ thermoreflectance mapping. By combining independent data sets for devices with varying dimensions, the model is distilled to measurable material properties, and device scaling laws are established. The model can accurately predict electrical and thermal conductivities and capacitances and locally active dynamics (especially persistent spiking self-oscillations). The systematic procedure by which this model is developed has been a missing link in predictively connecting neuromorphic device behavior with their underlying material properties, and should enable rapid screening of material candidates before employing expensive manufacturing processes and testing procedures.
Perez, Christopher P.; Jog, Atharv J.; Kwon, Heungdong K.; Gall, Daniel G.; Asheghi, Mehdi A.; Kumar, Suhas K.; Park, Woosung P.; Goodson, Kenneth E.
High aspect ratio metal nanostructures are commonly found in a broad range of applications such as electronic compute structures and sensing. The self-heating and elevated temperatures in these structures, however, pose a significant bottleneck to both the reliability and clock frequencies of modern electronic devices. Any notable progress in energy efficiency and speed requires fundamental and tunable thermal transport mechanisms in nanostructured metals. Here, in this work, time-domain thermoreflectance is used to expose cross-plane quasi-ballistic transport in epitaxially grown metallic Ir(001) interposed between Al and MgO(001). Thermal conductivities ranges from roughly 65 (96 in-plane) to 119 (122 in-plane) W m-1 K-1 for 25.5–133.0 nm films, respectively. Further, low defects afforded by epitaxial growth are suspected to allow the observation of electron–phonon coupling effects in sub-20 nm metals with traditionally electron-mediated thermal transport. Via combined electro-thermal measurements and phenomenological modeling, the transition is revealed between three modes of cross-plane heat conduction across different thicknesses and an interplay among them: electron dominant, phonon dominant, and electron–phonon energy conversion dominant. The results substantiate unexplored modes of heat transport in nanostructured metals, the insights of which can be used to develop electro-thermal solutions for a host of modern microelectronic devices and sensing structures.
This project aimed to identify the performance-limiting mechanisms in mid- to far infrared (IR) sensors by probing photogenerated free carrier dynamics in model detector materials using scanning ultrafast electron microscopy (SUEM). SUEM is a recently developed method based on using ultrafast electron pulses in combination with optical excitations in a pump- probe configuration to examine charge dynamics with high spatial and temporal resolution and without the need for microfabrication. Five material systems were examined using SUEM in this project: polycrystalline lead zirconium titanate (a pyroelectric), polycrystalline vanadium dioxide (a bolometric material), GaAs (near IR), InAs (mid IR), and Si/SiO 2 system as a prototypical system for interface charge dynamics. The report provides detailed results for the Si/SiO 2 and the lead zirconium titanate systems.
Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.