Spectral and polarimetric remote sensing for CBRNE applications
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Hyperspectral and multispectral imagers have been developed and deployed on satellite and manned aerial platforms for decades and have been used to produce spectrally resolved reflectance and other radiometric products. Similarly, light detection and ranging, or LIDAR, systems are regularly deployed from manned aerial platforms to produce a variety of products, including digital elevation models. While both types of systems have demonstrated impressive capabilities from these conventional platforms, for some applications it is desirable to have higher spatial resolution and more deployment flexibility than satellite or manned aerial platforms can offer. Commercially available unmanned aerial systems, or UAS, have recently emerged as an alternative platform for deploying optical imaging and detection systems, including spectral imagers and high resolution cameras. By enabling deployments in rugged terrain, collections at low altitudes, and flight durations of several hours, UAS offer the opportunity to obtain high spatial resolution products over multiple square kilometers in remote locations. Taking advantage of this emerging capability, our team recently deployed a commercial UAS to collect hyperspectral imagery, RGB imagery, and photogrammetry products at a legacy underground nuclear explosion test site and its surrounds. Ground based point spectrometer data collected over the same area serves as ground truth for the airborne results. The collected data is being used to map the site and evaluate the utility of optical remote sensing techniques for measuring signatures of interest, such as the mineralogy, anthropogenic objects, and vegetative health. This work will overview our test campaign, our results to date, and our plans for future work.
All analysis was performed using data provided to SNL in June, 2016.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.