Assessing the Sensitivity of Thermal Battery Performance to Material Thermal Properties via Simulation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.
Proposed for publication in Sensors and Actuators B.
This work describes the design, computational prototyping, fabrication, and characterization of a microfabricated thermal conductivity detector ({mu}TCD) to analyze the effluent from a micro-gas chromatograph column ({mu}GC) and to complement the detection efficacy of a surface acoustic wave detector in the micro-ChemLab{trademark} system. To maximize the detection sensitivity, we designed a four-filament Wheatstone bridge circuit where the resistors are suspended by a thin silicon nitride membrane in pyramidal or trapezoidal shaped flow cells. The geometry optimization was carried out by simulation of the heat transfer in the devices, utilizing a boundary element algorithm. Within microfabrication constraints, we determined and fabricated nine sensitivity-optimized geometries of the {mu}TCD. The nine optimal geometries were tested with two different flow patterns. We demonstrated that the perpendicular flow, where the gas directly impinged upon the membrane, yielded a sensitivity that is three times greater than the parallel flow, where the gas passed over the membrane. The functionality of the {mu}TCD was validated with the theoretical prediction and showed a consistent linear response to effluent concentrations, with a detection sensitivity of 1 ppm, utilizing less than 1 W of power.
This work describes the design, simulation, fabrication and characterization of a microfabricated thermal conductivity detector to be used as an extension of the {micro}ChemLab{trademark}. The device geometry was optimized by simulating the heat transfer in the device, utilizing a boundary element algorithm. In particular it is shown that within microfabrication constraints, a micro-TCD optimized for sensitivity can be readily calculated. Two flow patterns were proposed and were subsequently fabricated into nine-promising geometries. The microfabricated detector consists of a slender metal film, supported by a suspended thin dielectric film over a pyramidal or trapezoidal silicon channel. It was demonstrated that the perpendicular flow, where the gas directly impinges on the membrane, creates a device that is 3 times more sensitive than the parallel flow, where the gas passed over the membrane. This resulted in validation of the functionality of a microfabricated TCD as a trace-level detector, utilizing low power. the detector shows a consistent linear response to concentration and they are easily able to detect 100-ppm levels of CO in He. Comparison of noise levels for this analysis indicates that sub part per million (ppm) levels are achievable with the selection of the right set of conditions for the detector to operate under. This detector was originally proposed as part of a high-speed detection system for the petrochemical gas industry. This system was to be utilized as a process monitor to detect reactor ''upset'' conditions before a run away condition could occur (faster than current full-scale monitoring systems were able to achieve). Further outlining of requirements indicated that the detection levels likely achievable with a TCD detector would not be sufficient to meet the process condition needs. Therefore the designed and fabricated detector was integrated into a detection system to showcase some technologies that could further the development of components for the current gas phase {micro}ChemLab as well as future modifications for process monitoring work such as: pressurized connections, gas sampling procedures, and packed columns. Component integration of a microfabricated planar pre-concentrator, gas-chromatograph column and TCD in the separation/detection of hydrocarbons, such as benzene, toluene and xylene (BTX) was also demonstrated with this system.
Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.