Publications

8 Results
Skip to search filters

Macro-meso-microsystems integration in LTCC : LDRD report

Rohde, Steven B.; Okandan, Murat O.; Pfeifer, Kent B.; De Smet, Dennis J.; Patel, Kamlesh P.; Ho, Clifford K.; Nordquist, Christopher N.; Walker, Charles A.; Rohrer, Brandon R.; Buerger, Stephen B.; Wroblewski, Brian W.

Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modules using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.

More Details

Novel microsystem applications with new techniques in LTCC

Patel, Kamlesh P.; Ho, Clifford K.; Rohde, Steven B.; Nordquist, Christopher N.; Walker, Charles A.; Okandan, Murat O.

Low-temperature co-fired ceramic (LTCC) enables development and testing of critical elements on microsystem boards as well as nonmicroelectronic meso-scale applications. We describe silicon-based microelectromechanical systems packaging and LTCC meso-scale applications. Microfluidic interposers permit rapid testing of varied silicon designs. The application of LTCC to micro-high-performance liquid chromatography (?-HPLC) demonstrates performance advantages at very high pressures. At intermediate pressures, a ceramic thermal cell lyser has lysed bacteria spores without damaging the proteins. The stability and sensitivity of LTCC/chemiresistor smart channels are comparable to the performance of silicon-based chemiresistors. A variant of the use of sacrificial volume materials has created channels, suspended thick films, cavities, and techniques for pressure and flow sensing. We report on inductors, diaphragms, cantilevers, antennae, switch structures, and thermal sensors suspended in air. The development of 'functional-as-released' moving parts has resulted in wheels, impellers, tethered plates, and related new LTCC mechanical roles for actuation and sensing. High-temperature metal-to-LTCC joining has been developed with metal thin films for the strong, hermetic interfaces necessary for pins, leads, and tubes.

More Details

Novel structures in ceramic interconnect technology

Rohde, Steven B.; Stokes, Robert N.; Casias, Adrian L.

Ceramic interconnect technology has been adapted to new structures. In particular, the ability to customize processing order and material choices in Low Temperature Cofired Ceramic (LTCC) has enabled new features to be constructed, which address needs in MEMS packaging as well as other novel structures. Unique shapes in LTCC permit the simplification of complete systems, as in the case of a miniature ion mobility spectrometer (IMS). In this case, a rolled tube has been employed to provide hermetic external contacts to electrodes and structures internal to the tube. Integral windows in LTCC have been fabricated for use in both lids and circuits where either a short term need for observation or a long-term need for functionality exists. These windows are fabricated without adhesive, are fully compatible with LTCC processing, and remain optically clear. Both vented and encapsulated functional volumes have been fabricated using a sacrificial material technique. These hold promise for self-assembly of systems, as well as complex internal structures in cavities, micro fluidic and optical channels, and multilevel integration techniques. Separation of the burnout and firing cycles has permitted custom internal environments to be established. Existing commercial High Temperature Cofired Ceramic (HTCC) and LTCC systems can also be rendered to have improved properties. A rapid prototyping technique for patterned HTCC packages has permitted prototypes to be realized in a few days, and has further applications to micro fluidics, heat pipes, and MEMS, among others. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

More Details
8 Results
8 Results