Publications

21 Results
Skip to search filters

Fire-induced failure mode testing for dc-powered control circuits

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Nowlen, Steven P.; Taylor, Gabriel; Brown, Jason

The U.S. Nuclear Regulatory Commission, in concert with industry, continues to explore the effects of fire on electrical cable and control circuit performance. The latest efforts, which are currently underway, are exploring issues related to fire-induced cable failure modes and effects for direct current (dc) powered electrical control circuits. An extensive series of small and intermediate scale fire tests has been performed. Each test induced electrical failure in copper conductor cables of various types typical of those used by the U.S. commercial nuclear power industry. The cables in each test were connected to one of several surrogate dc control circuits designed to monitor and detect cable electrical failure modes and effects. The tested dc control circuits included two sets of reversing dc motor starters typical of those used in motor-operated valve (MOV) circuits, two small solenoid-operated valves (SOV), one intermediate size (1-inch (25.4mm) diameter) SOV, a very large direct-acting valve coil, and a switchgear/breaker unit. Also included was a specialized test circuit designed specifically to monitor for electrical shorts between two cables (inter-cable shorting). Each of these circuits was powered from a nominal 125V battery bank comprised of 60 individual battery cells (nominal 2V lead-acid type cells with plates made from a lead-cadmium alloy). The total available short circuit current at the terminals of the battery bank was estimated at 13,000A. All of the planned tests have been completed with the data analysis and reporting currently being completed. This paper will briefly describe the test program, some of the preliminary test insights, and planned follow-on activities.

More Details

Limitations imposed on fire PRA methods as the result of incomplete and uncertain fire event data

Nowlen, Steven P.

Fire probabilistic risk assessment (PRA) methods utilize data and insights gained from actual fire events in a variety of ways. For example, fire occurrence frequencies, manual fire fighting effectiveness and timing, and the distribution of fire events by fire source and plant location are all based directly on the historical experience base. Other factors are either derived indirectly or supported qualitatively based on insights from the event data. These factors include the general nature and intensity of plant fires, insights into operator performance, and insights into fire growth and damage behaviors. This paper will discuss the potential methodology improvements that could be realized if more complete fire event reporting information were available. Areas that could benefit from more complete event reporting that will be discussed in the paper include fire event frequency analysis, analysis of fire detection and suppression system performance including incipient detection systems, analysis of manual fire fighting performance, treatment of fire growth from incipient stages to fully-involved fires, operator response to fire events, the impact of smoke on plant operations and equipment, and the impact of fire-induced cable failures on plant electrical circuits.

More Details

Metal fires and their implications for advanced reactors

Transactions of the American Nuclear Society

Olivier, Tara J.; Blanchat, Tom; Hewson, John C.; Nowlen, Steven P.

With the scoping experimental results, initial computational model development is underway. Coupling the experimental program with the computational modern analysis will develop the expertise and capability needed to identify, investigate, and assess key metal fires issues.

More Details

A phenomena identification and ranking table (PIRT) exercise for nuclear power plant fire model applications

American Nuclear Society - International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2008

Nowlen, Steven P.; Olivier, Tara J.; Dreisbach, Jason; Salley, Mark H.

This paper summarizes the results of a Phenomena Identification and Ranking Table (PIRT) exercise performed for nuclear power plant (NPP) fire modeling applications conducted on behalf of the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES). A PIRT exercise is a formalized, facilitated expert elicitation process. In this case, the expert panel was comprised of seven international fire science experts and was facilitated by Sandia National Laboratories (SNL). The objective of a PIRT exercise is to identify key phenomena associated with the intended application and to then rank the importance and current state of knowledge of each identified phenomenon. One intent of this process is to provide input into the process of identifying and prioritizing future research efforts. In practice, the panel considered a series of specific fire scenarios based on scenarios typically considered in NPP applications. Each scenario includes a defined figure of merit; that is, a specific goal to be achieved in analyzing the scenario through the application of fire modeling tools. The panel identifies any and all phenomena relevant to a fire modeling-based analysis for the figure of merit. Each phenomenon is ranked relative to its importance to the fire model outcome and then further ranked against the existing state of knowledge and adequacy of existing modeling tools to predict that phenomenon. The PIRT panel covered several fire scenarios and identified a number of areas potentially in need of further fire modeling improvements. The paper summarizes the results of the ranking exercise.

More Details

High energy arcing fault fires in switchgear equipment : a literature review

Nowlen, Steven P.; Wyant, Francis J.

In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

More Details

Metal fire implications for advanced reactors. Part 2, PIRT results

Olivier, Tara J.; Blanchat, Tom; Dion, Jeanne D.; Hewson, John C.; Nowlen, Steven P.; Radel, Ross R.

This report documents the results of a Phenomena Identification and Ranking Table (PIRT) exercise performed at Sandia National Laboratories (SNL) as well as the experimental and modeling program that have been designed based on the PIRT results. A PIRT exercise is a structured and facilitated expert elicitation process. In this case, the expert panel was comprised of nine recognized fire science and aerosol experts. The objective of a PIRT exercise is to identify phenomena associated with the intended application and to then rank the current state of knowledge relative to each identified phenomenon. In this particular PIRT exercise the intended application was sodium fire modeling related to sodium-cooled advanced reactors. The panel was presented with two specific fire scenarios, each based on a hypothetical sodium leak in an Advanced Breeder Test Reactor (ABTR) design. For both scenarios the figure of merit was the ability to predict the thermal and aerosol insult to nearby equipment (i.e. heat exchangers and other electrical equipment). When identifying phenomena of interest, and in particular when ranking phenomena importance and the adequacy of existing modeling tools and data, the panel was asked to subjectively weigh these factors in the context of the specified figure of merit. Given each scenario, the panel identified all those related phenomena that are of potential interest to an assessment of the scenario using fire modeling tools to evaluate the figure of merit. Each phenomenon is then ranked relative to its importance in predicting the figure of merit. Each phenomenon is then further ranked for the existing state of knowledge with respect to the ability of existing modeling tools to predict that phenomena, the underlying base of data associated with the phenomena, and the potential for developing new data to support improvements to the existing modeling tools. For this PIRT two hypothetical sodium leak scenarios were evaluated for the ABTR design. The first scenario was a leak in the hot side of the intermediate heat transport system (IHTS) resulting in a sodium pool fire. The second scenario was a leak in the cold side of the IHTS resulting in a sodium spray fire.

More Details

Metal fire implications for advanced reactors. Part 1, literature review

Olivier, Tara J.; Radel, Ross R.; Nowlen, Steven P.; Blanchat, Tom; Hewson, John C.

Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior.

More Details

EPRI/NRC-RES fire PRA guide for nuclear power facilities. Volume 1, summary and overview

Forester, John A.; Wyant, Francis J.; Nowlen, Steven P.

This report documents state-of-the-art methods, tools, and data for the conduct of a fire Probabilistic Risk Assessment (PRA) for a commercial nuclear power plant (NPP) application. The methods have been developed under the Fire Risk Re-quantification Study. This study was conducted as a joint activity between EPRI and the U. S. NRC Office of Nuclear Regulatory Research (RES) under the terms of an EPRI/RES Memorandum of Understanding [RS.1] and an accompanying Fire Research Addendum [RS.2]. Industry participants supported demonstration analyses and provided peer review of this methodology. The documented methods are intended to support future applications of Fire PRA, including risk-informed regulatory applications. The documented method reflects state-of-the-art fire risk analysis approaches. The primary objective of the Fire Risk Study was to consolidate recent research and development activities into a single state-of-the-art fire PRA analysis methodology. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events (IPEEE) fire analyses, have been addressed to the extent allowed by the current state-of-the-art and the overall project scope. Methodological debates were resolved through a consensus process between experts representing both EPRI and RES. The consensus process included a provision whereby each major party (EPRI and RES) could maintain differing technical positions if consensus could not be reached. No cases were encountered where this provision was invoked. While the primary objective of the project was to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advancement over previously documented methods. In several areas, this project has, in fact, developed new methods and approaches. Such advances typically relate to areas of past methodological debate.

More Details

Results and Insights on the Impact of Smoke on Digital Instrumentation and Control

Martin, Tina T.; Nowlen, Steven P.

Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and to cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.

More Details

LDRD report: Smoke effects on electrical equipment

Martin, Tina T.; Baynes, Edward E.; Nowlen, Steven P.; Brockmann, John E.; Gritzo, Louis A.; Shaddix, Christopher R.

Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.

More Details
21 Results
21 Results