Publications

17 Results
Skip to search filters

Enhancing GADRAS Source Term Inputs for Creation of Synthetic Spectra

Horne, Steven M.; Harding, Lee T.

The Gamma Detector Response and Analysis Software (GADRAS) team has enhanced the source term input for the creation of synthetic spectra. These enhancements include the following: allowing users to programmatically provide source information to GADRAS through memory, rather than through a string limited to 256 characters; allowing users to provide their own source decay database information; and updating the default GADRAS decay database to fix errors and include coincident gamma information.

More Details

Directional Unfolded Source Term (DUST) for Compton Cameras

Mitchell, Dean J.; Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean O.; Thoreson, Gregory G.

A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

More Details

GADRAS-DRF 18.5 User?s Manual

Horne, Steven M.; Thoreson, Gregory G.; Theisen, Lisa A.; Mitchell, Dean J.; Harding, Lee T.; Amai, Wendy

The Gamma Detector Response and Analysis Software--Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

More Details

GADRAS-DRF 18.5 User's Manual

Horne, Steven M.; Thoreson, Gregory G.; Theisen, Lisa A.; Mitchell, Dean J.; Harding, Lee T.; Amai, Wendy

The Gamma Detector Response and Analysis Software - Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

More Details

GADRAS Detector Response Function

Mitchell, Dean J.; Harding, Lee T.; Thoreson, Gregory G.; Horne, Steven M.

The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

More Details

Coupling External Radiation Transport Code Results to the GADRAS Detector Response Function

Horne, Steven M.; Mitchell, Dean J.; Thoreson, Gregory G.

Simulating gamma spectra is useful for analyzing special nuclear materials. Gamma spectra are influenced not only by the source and the detector, but also by the external, and potentially complex, scattering environment. The scattering environment can make accurate representations of gamma spectra difficult to obtain. By coupling the Monte Carlo Nuclear Particle (MCNP) code with the Gamma Detector Response and Analysis Software (GADRAS) detector response function, gamma spectrum simulations can be computed with a high degree of fidelity even in the presence of a complex scattering environment. Traditionally, GADRAS represents the external scattering environment with empirically derived scattering parameters. By modeling the external scattering environment in MCNP and using the results as input for the GADRAS detector response function, gamma spectra can be obtained with a high degree of fidelity. This method was verified with experimental data obtained in an environment with a significant amount of scattering material. The experiment used both gamma-emitting sources and moderated and bare neutron-emitting sources. The sources were modeled using GADRAS and MCNP in the presence of the external scattering environment, producing accurate representations of the experimental data.

More Details

GADRAS-DRF user's manual

Mitchell, Dean J.; Horne, Steven M.; Theisen, Lisa A.; Thoreson, Gregory G.; Harding, Lee T.; Bradley, Jon D.; Eldridge, Bryce D.; Amai, Wendy

The Gamma Detector Response and Analysis Software-Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, and analyzing spectra to identify isotopes or to estimate flux profiles. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving researchers and other users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

More Details
17 Results
17 Results