Publications

2 Results
Skip to search filters

Automatic recognition of malicious intent indicators

Koch, Mark W.; Nguyen, Hung D.; Giron, Casey; Yee, Mark L.; Drescher, Steven M.

A major goal of next-generation physical protection systems is to extend defenses far beyond the usual outer-perimeter-fence boundaries surrounding protected facilities. Mitigation of nuisance alarms is among the highest priorities. A solution to this problem is to create a robust capability to Automatically Recognize Malicious Indicators of intruders. In extended defense applications, it is not enough to distinguish humans from all other potential alarm sources as human activity can be a common occurrence outside perimeter boundaries. Our approach is unique in that it employs a stimulus to determine a malicious intent indicator for the intruder. The intruder's response to the stimulus can be used in an automatic reasoning system to decide the intruder's intent.

More Details

A statistics-based approach to binary image registration with uncertainty analysis

IEEE Transactions on Pattern Analysis and Machine Intelligence

Simonson, Katherine M.; Drescher, Steven M.; Tanner, Franklin R.

A new technique is described for the registration of edge-detected images. While an extensive literature exists on the problem of image registration, few of the current approaches include a well-defined measure of the statistical confidence associated with the solution. Such a measure is essential for many autonomous applications, where registration solutions that are dubious (involving poorly focused images or terrain that is obscured by clouds) must be distinguished from those that are reliable (based on clear images of highly structured scenes). The technique developed herein utilizes straightforward edge pixel matching to determine the "best" among a class of candidate translations. A well-established statistical procedure, the McNemar test, is then applied to identify which other candidate solutions are not significantly worse than the best solution. This allows for the construction of confidence regions in the space of the registration parameters. The approach is validated through a simulation study and examples are provided of its application in numerous challenging scenarios. While the algorithm is limited to solving for two-dimensional translations, its use in validating solutions to higher-order (rigid body, affine) transformation problems is demonstrated. © 2007 IEEE.

More Details
2 Results
2 Results