Publications

Results 1–25 of 135
Skip to search filters

What can simulation test beds teach us about social science? Results of the ground truth program

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Krofcheck, Daniel J.; Warrender, Christina E.; Lakkaraju, Kiran L.; Swiler, Laura P.; Verzi, Stephen J.; Emery, Ben; Murdock, Jaimie; Bernard, Michael L.; Romero, Vicente J.

The ground truth program used simulations as test beds for social science research methods. The simulations had known ground truth and were capable of producing large amounts of data. This allowed research teams to run experiments and ask questions of these simulations similar to social scientists studying real-world systems, and enabled robust evaluation of their causal inference, prediction, and prescription capabilities. We tested three hypotheses about research effectiveness using data from the ground truth program, specifically looking at the influence of complexity, causal understanding, and data collection on performance. We found some evidence that system complexity and causal understanding influenced research performance, but no evidence that data availability contributed. The ground truth program may be the first robust coupling of simulation test beds with an experimental framework capable of teasing out factors that determine the success of social science research.

More Details

Feedback density and causal complexity of simulation model structure

Journal of Simulation

Naugle, Asmeret B.; Verzi, Stephen J.; Lakkaraju, Kiran L.; Swiler, Laura P.; Warrender, Christina E.; Bernard, Michael L.; Romero, Vicente J.

Measures of simulation model complexity generally focus on outputs; we propose measuring the complexity of a model’s causal structure to gain insight into its fundamental character. This article introduces tools for measuring causal complexity. First, we introduce a method for developing a model’s causal structure diagram, which characterises the causal interactions present in the code. Causal structure diagrams facilitate comparison of simulation models, including those from different paradigms. Next, we develop metrics for evaluating a model’s causal complexity using its causal structure diagram. We discuss cyclomatic complexity as a measure of the intricacy of causal structure and introduce two new metrics that incorporate the concept of feedback, a fundamental component of causal structure. The first new metric introduced here is feedback density, a measure of the cycle-based interconnectedness of causal structure. The second metric combines cyclomatic complexity and feedback density into a comprehensive causal complexity measure. Finally, we demonstrate these complexity metrics on simulation models from multiple paradigms and discuss potential uses and interpretations. These tools enable direct comparison of models across paradigms and provide a mechanism for measuring and discussing complexity based on a model’s fundamental assumptions and design.

More Details

Conflicting Information and Compliance With COVID-19 Behavioral Recommendations

Naugle, Asmeret B.; Rothganger, Fredrick R.; Verzi, Stephen J.; Doyle, Casey L.

The prevalence of COVID-19 is shaped by behavioral responses to recommendations and warnings. Available information on the disease determines the population’s perception of danger and thus its behavior; this information changes dynamically, and different sources may report conflicting information. We study the feedback between disease, information, and stay-at-home behavior using a hybrid agent-based-system dynamics model that incorporates evolving trust in sources of information. We use this model to investigate how divergent reporting and conflicting information can alter the trajectory of a public health crisis. The model shows that divergent reporting not only alters disease prevalence over time, but also increases polarization of the population’s behaviors and trust in different sources of information.

More Details

MalGen: Malware Generation with Specific Behaviors to Improve Machine Learning-based Detectors

Smith, Michael R.; Carbajal, Armida J.; Domschot, Eva D.; Johnson, Nicholas J.; Goyal, Akul A.; Lamb, Christopher L.; Lubars, Joseph L.; Kegelmeyer, William P.; Krishnakumar, Raga K.; Quynn, Sophie Q.; Ramyaa, Ramyaa R.; Verzi, Stephen J.; Zhou, Xin Z.

In recent years, infections and damage caused by malware have increased at exponential rates. At the same time, machine learning (ML) techniques have shown tremendous promise in many domains, often out performing human efforts by learning from large amounts of data. Results in the open literature suggest that ML is able to provide similar results for malware detection, achieving greater than 99% classifcation accuracy [49]. However, the same detection rates when applied in deployed settings have not been achieved. Malware is distinct from many other domains in which ML has shown success in that (1) it purposefully tries to hide, leading to noisy labels and (2) often its behavior is similar to benign software only differing in intent, among other complicating factors. This report details the reasons for the diffcultly of detecting novel malware by ML methods and offers solutions to improve the detection of novel malware.

More Details

Graph-Based Similarity Metrics for Comparing Simulation Model Causal Structures

Naugle, Asmeret B.; Swiler, Laura P.; Lakkaraju, Kiran L.; Verzi, Stephen J.; Warrender, Christina E.; Romero, Vicente J.

The causal structure of a simulation is a major determinant of both its character and behavior, yet most methods we use to compare simulations focus only on simulation outputs. We introduce a method that combines graphical representation with information theoretic metrics to quantitatively compare the causal structures of models. The method applies to agent-based simulations as well as system dynamics models and facilitates comparison within and between types. Comparing models based on their causal structures can illuminate differences in assumptions made by the models, allowing modelers to (1) better situate their models in the context of existing work, including highlighting novelty, (2) explicitly compare conceptual theory and assumptions to simulated theory and assumptions, and (3) investigate potential causal drivers of divergent behavior between models. We demonstrate the method by comparing two epidemiology models at different levels of aggregation.

More Details

The Ground Truth Program: Simulations as Test Beds for Social Science Research Methods.

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Russell, Adam R.; Lakkaraju, Kiran L.; Swiler, Laura P.; Verzi, Stephen J.; Romero, Vicente J.

Social systems are uniquely complex and difficult to study, but understanding them is vital to solving the world’s problems. The Ground Truth program developed a new way of testing the research methods that attempt to understand and leverage the Human Domain and its associated complexities. The program developed simulations of social systems as virtual world test beds. Not only were these simulations able to produce data on future states of the system under various circumstances and scenarios, but their causal ground truth was also explicitly known. Research teams studied these virtual worlds, facilitating deep validation of causal inference, prediction, and prescription methods. The Ground Truth program model provides a way to test and validate research methods to an extent previously impossible, and to study the intricacies and interactions of different components of research.

More Details

Data Science and Machine Learning for Genome Security

Verzi, Stephen J.; Krishnakumar, Raga K.; Levin, Drew L.; Krofcheck, Daniel J.; Williams, Kelly P.

This report describes research conducted to use data science and machine learning methods to distinguish targeted genome editing versus natural mutation and sequencer machine noise. Genome editing capabilities have been around for more than 20 years, and the efficiencies of these techniques has improved dramatically in the last 5+ years, notably with the rise of CRISPR-Cas technology. Whether or not a specific genome has been the target of an edit is concern for U.S. national security. The research detailed in this report provides first steps to address this concern. A large amount of data is necessary in our research, thus we invested considerable time collecting and processing it. We use an ensemble of decision tree and deep neural network machine learning methods as well as anomaly detection to detect genome edits given either whole exome or genome DNA reads. The edit detection results we obtained with our algorithms tested against samples held out during training of our methods are significantly better than random guessing, achieving high F1 and recall scores as well as with precision overall.

More Details

A Theoretical Approach for Reliability Within Information Supply Chains with Cycles and Negations

IEEE Transactions on Reliability

Livesay, Michael L.; Pless, Daniel J.; Verzi, Stephen J.; Stamber, Kevin L.; Lilje, Anne

Complex networks of information processing systems, or information supply chains, present challenges for performance analysis. We establish a mathematical setting, in which a process within an information supply chain can be analyzed in terms of the functionality of the system's components. Principles of this methodology are rigorously defended and induce a model for determining the reliability for the various products in these networks. Our model does not limit us from having cycles in the network, as long as the cycles do not contain negation. It is shown that our approach to reliability resolves the nonuniqueness caused by cycles in a probabilistic Boolean network. An iterative algorithm is given to find the reliability values of the model, using a process that can be fully automated. This automated method of discerning reliability is beneficial for systems managers. As a systems manager considers systems modification, such as the replacement of owned and maintained hardware systems with cloud computing resources, the need for comparative analysis of system reliability is paramount. The model is extended to handle conditional knowledge about the network, allowing one to make predictions of weaknesses in the system. Finally, to illustrate the model's flexibility over different forms, it is demonstrated on a system of components and subcomponents.

More Details

Predictive Data-driven Platform for Subsurface Energy Production

Yoon, Hongkyu Y.; Verzi, Stephen J.; Cauthen, Katherine R.; Musuvathy, Srideep M.; Melander, Darryl J.; Norland, Kyle N.; Morales, Adriana M.; Lee, Jonghyun H.; Sun, Alexander Y.

Subsurface energy activities such as unconventional resource recovery, enhanced geothermal energy systems, and geologic carbon storage require fast and reliable methods to account for complex, multiphysical processes in heterogeneous fractured and porous media. Although reservoir simulation is considered the industry standard for simulating these subsurface systems with injection and/or extraction operations, reservoir simulation requires spatio-temporal “Big Data” into the simulation model, which is typically a major challenge during model development and computational phase. In this work, we developed and applied various deep neural network-based approaches to (1) process multiscale image segmentation, (2) generate ensemble members of drainage networks, flow channels, and porous media using deep convolutional generative adversarial network, (3) construct multiple hybrid neural networks such as convolutional LSTM and convolutional neural network-LSTM to develop fast and accurate reduced order models for shale gas extraction, and (4) physics-informed neural network and deep Q-learning for flow and energy production. We hypothesized that physicsbased machine learning/deep learning can overcome the shortcomings of traditional machine learning methods where data-driven models have faltered beyond the data and physical conditions used for training and validation. We improved and developed novel approaches to demonstrate that physics-based ML can allow us to incorporate physical constraints (e.g., scientific domain knowledge) into ML framework. Outcomes of this project will be readily applicable for many energy and national security problems that are particularly defined by multiscale features and network systems.

More Details

Advanced Detection of Wellbore Failure for Safe and Secure Utilization of Subsurface Infrastructure

Matteo, Edward N.; Conley, Donald M.; Verzi, Stephen J.; Roberts, Barry L.; Doyle, Casey L.; Sobolik, Steven R.; Gilletly, Samuel G.; Bauer, Stephen J.; Pyrak-Nolte, L.P.; Reda Taha, M.M.; Stormont, J.C.; Crandall, D.C.; Moriarty, Dylan; John, Esther W.; Wilson, Jennifer E.; Bettin, Giorgia B.; Hogancamp, Joshua H.; Fernandez, S.G.; Anwar, I.A.; Abdellatef, M.A.; Murcia, D.H.; Bland, J.B.

The main goal of this project was to create a state-of-the-art predictive capability that screens and identifies wellbores that are at the highest risk of catastrophic failure. This capability is critical to a host of subsurface applications, including gas storage, hydrocarbon extraction and storage, geothermal energy development, and waste disposal, which depend on seal integrity to meet U.S. energy demands in a safe and secure manner. In addition to the screening tool, this project also developed several other supporting capabilities to help understand fundamental processes involved in wellbore failure. This included novel experimental methods to characterize permeability and porosity evolution during compressive failure of cement, as well as methods and capabilities for understanding two-phase flow in damaged wellbore systems, and novel fracture-resistant cements made from recycled fibers.

More Details

Emergent Recursive Multiscale Interaction in Complex Systems

Naugle, Asmeret B.; Doyle, Casey L.; Sweitzer, Matthew; Rothganger, Fredrick R.; Verzi, Stephen J.; Lakkaraju, Kiran L.; Kittinger, Robert; Bernard, Michael L.; Chen, Yuguo C.; Loyal, Joshua L.; Mueen, Abdullah M.

This project studied the potential for multiscale group dynamics in complex social systems, including emergent recursive interaction. Current social theory on group formation and interaction focuses on a single scale (individuals forming groups) and is largely qualitative in its explanation of mechanisms. We combined theory, modeling, and data analysis to find evidence that these multiscale phenomena exist, and to investigate their potential consequences and develop predictive capabilities. In this report, we discuss the results of data analysis showing that some group dynamics theory holds at multiple scales. We introduce a new theory on communicative vibration that uses social network dynamics to predict group life cycle events. We discuss a model of behavioral responses to the COVID-19 pandemic that incorporates influence and social pressures. Finally, we discuss a set of modeling techniques that can be used to simulate multiscale group phenomena.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven R.; Gilletly, Samuel G.; Doyle, Casey L.; John, Esther W.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven R.; Gilletly, Samuel G.; Doyle, Casey L.; John, Esther W.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

Machine learning application for permeability estimation of three-dimensional rock images

CEUR Workshop Proceedings

Yoon, Hongkyu Y.; Melander, Darryl J.; Verzi, Stephen J.

Estimation of permeability in porous media is fundamental to understanding coupled multi-physics processes critical to various geoscience and environmental applications. Recent emerging machine learning methods with physics-based constraints and/or physical properties can provide a new means to improve computational efficiency while improving machine learning-based prediction by accounting for physical information during training. Here we first used three-dimensional (3D) real rock images to estimate permeability of fractured and porous media using 3D convolutional neural networks (CNNs) coupled with physics-informed pore topology characteristics (e.g., porosity, surface area, connectivity) during the training stage. Training data of permeability were generated using lattice Boltzmann simulations of segmented real rock 3D images. Our preliminary results show that neural network architecture and usage of physical properties strongly impact the accuracy of permeability predictions. In the future we can adjust our methodology to other rock types by choosing the appropriate architecture and proper physical properties, and optimizing the hyperparameters.

More Details
Results 1–25 of 135
Results 1–25 of 135