Publications

Results 1–50 of 215
Skip to search filters

Lasergate: a windowless gas target for enhanced laser preheat in MagLIF

Galloway, B.R.; Slutz, Stephen A.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Jennings, Christopher A.; Field, Ella S.; Kletecka, Damon E.; Looker, Quinn M.; Colombo, Anthony P.; Edens, Aaron E.; Smith, Ian C.; Shores, Jonathon S.; Speas, Christopher S.; Speas, Robert J.; Spann, Andrew S.; Sin, Justin S.; Gautier, Sophie G.; Sauget, Vincent S.; Treadwell, Paul T.; Rochau, G.A.; Porter, John L.

Abstract not provided.

Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion

Physics of Plasmas

Lewis, William L.; Knapp, Patrick K.; Slutz, Stephen A.; Schmit, Paul S.; Chandler, Gordon A.; Gomez, Matthew R.; Harvey-Thompson, Adam J.; Mangan, Michael M.; Ampleford, David A.; Beckwith, Kristian B.

Fuel magnetization in magneto-inertial fusion (MIF) experiments improves charged burn product confinement, reducing requirements on fuel areal density and pressure to achieve self-heating. By elongating the path length of 1.01 MeV tritons produced in a pure deuterium fusion plasma, magnetization enhances the probability for deuterium-tritium reactions producing 11.8−17.1 MeV neutrons. Nuclear diagnostics thus enable a sensitive probe of magnetization. Characterization of magnetization, including uncertainty quantification, is crucial for understanding the physics governing target performance in MIF platforms, such as magnetized liner inertial fusion (MagLIF) experiments conducted at Sandia National Laboratories, Z-facility. We demonstrate a deep-learned surrogate of a physics-based model of nuclear measurements. A single model evaluation is reduced from CPU hours on a high-performance computing cluster down to ms on a laptop. This enables a Bayesian inference of magnetization, rigorously accounting for uncertainties from surrogate modeling and noisy nuclear measurements. The approach is validated by testing on synthetic data and comparing with a previous study. We analyze a series of MagLIF experiments systematically varying preheat, resulting in the first ever systematic experimental study of magnetic confinement properties of the fuel plasma as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that magnetization decreases from B ∼0.5 to B MG cm as laser preheat energy deposited increases from preheat ∼460 J to E preheat ∼1.4 kJ. This trend is consistent with 2D LASNEX simulations showing Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.

More Details

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, B.R.; Hansen, Stephanie B.; Hanson, Jeffrey J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lamppa, Derek C.; Lewis, William L.; Mangan, Michael M.; Maurer, A.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

Developing a platform to enable parameter scaling studies in Magnetized Liner Inertial Fusion experiments

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Weis, Matthew R.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Awe, Thomas J.; Chandler, Gordon A.; Crabtree, Jerry A.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harding, Eric H.; Lewis, William L.; Mangan, Michael M.; Ruiz, Daniel E.; Smith, Ian C.; Yager-Elorriaga, David A.; Ampleford, David A.; Beckwith, Kristian B.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Lewis, William L.; Robertson, Grafton K.; Savage, Mark E.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

Fusion gain from cylindrical liner-driven implosions of field reversed configurations

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.

MagLIF experiments [M.R. Gomez et al., Phys. Plasmas 22, 056306 (2015)] on Z have demonstrated the basic principles of Magneto-Inertial Fusion (MIF) for wall confined plasmas. Other MIF schemes have been proposed based on the liner implosion of closed field magnetically confined plasmas such as Field Reversed Configurations (FRCs) [T. P. Intrator et al., Phys. Plasmas 15, 042505 (2008)]. We present a semi-analytical model of liner driven FRC implosions that predicts the fusion gain of such systems. The model predicts a fusion gain near unity for an FRC imploded by a liner driven by the Z Machine. We show that FRCs could be formed and imploded at the Z facility using the AutoMag liner concept [S. A. Slutz et al., Phys. Plasmas 24, 012704 (2017)]. An initial bias magnetic field can be supplied by the external magnets used in MagLIF experiments. The reverse field is then supplied by an AutoMag liner, which has helical conducting paths imbedded in an insulating substance. Experiments [Shipley et al., Phys. Plasmas 26, 052705 (2019)] have demonstrated that AutoMag can generate magnetic fields greater than 30 Tesla inside of the liner. We have performed 2D Radiation MHD simulations of the formation and implosion of an FRC, which are in good agreement with the analytical model. The FRC formation process could be studied on small pulsed power machines delivering about 1 MA.

More Details

IMPROVED PERFORMANCE OF MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS WITH HIGH-ENERGY LOW-MIX LASER PREHEAT CONFIGURATIONS

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, Kelly D.; Hansen, Stephanie B.; Hanson, Joseph C.; Harding, Eric H.; Knapp, Patrick K.; Mangan, Michael M.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Paguio, Reny P.; Smith, Gary L.; York, Adam Y.

Abstract not provided.

Narrowband Self-Emission X-ray Imaging of MagLIF Targets on Z

Gomez, Matthew R.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Dunham, Gregory S.; Knapp, Patrick K.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Robertson, Grafton K.; Speas, Christopher S.; Maurer, A.; Ampleford, David A.; Rochau, G.A.; Doron, R.D.; O. Nedostup, E.O.; Stambulchik, Stambulchik; Zarnitsky, Y.Z.; Maron, Y.M.; Paguio, Reny P.; Tomlinson, Kurt T.; Huang, H.H.; Smith, Gary S.; Taylor, Randy T.

Abstract not provided.

Update on MagLIF preheat experiments

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Galloway, B.R.; Fein, Jeffrey R.; Awe, Thomas J.; Crabtree, Jerry A.; Ampleford, David A.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Hanson, Joseph C.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Perea, L.; Peterson, Kyle J.; Porter, James D.; Rambo, Patrick K.; Robertson, Grafton K.; Ruiz, Daniel E.; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; York, Adam Y.; Paguio, R.R.; Smith, G.E.; Maudlin, M.M.; Pollock, B.P.

Abstract not provided.

Inertial Fusion Energy program within OFES

Slutz, Stephen A.

Inertial Fusion is being supported by the NNSA for weapon physics and, although net gain has not yet been attained, significant progress has been made. National Ignition Facility (NIF) capsules have attained fusion gain within the fuel. MagLIF, which is presently being studied at the Z facility, has demonstrated the basic principles of Magneto-Inertial Fusion (MIF), which may provide an alternative path to fusion. Despite these successes there is presently no effort to determine if inertial fusion can be used to generate electrical energy. It would be prudent to have a small program directed to the application of inertial fusion for energy (IFE). This program would not have the same goals as the NNSA and should thus be funded by OFES.

More Details

The Impact on Mix of Different Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, B.R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark W.; Knapp, Patrick K.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Woodbury, Daniel W.; Smith, G.E.

Abstract not provided.

Progress in Implementing High-Energy Low-Mix Laser Preheat for MagLIF

Harvey-Thompson, Adam J.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Geissel, Matthias G.; Jennings, Christopher A.; Jennings, Christopher A.; Weis, Matthew R.; Weis, Matthew R.; Ampleford, David A.; Ampleford, David A.; Bliss, David E.; Bliss, David E.; Chandler, Gordon A.; Chandler, Gordon A.; Fein, Jeffrey R.; Fein, Jeffrey R.; Galloway, B.R.; Galloway, B.R.; Glinsky, Michael E.; Glinsky, Michael E.; Gomez, Matthew R.; Gomez, Matthew R.; Hahn, K.D.; Hahn, K.D.; Hansen, Stephanie B.; Hansen, Stephanie B.; Harding, Eric H.; Harding, Eric H.; Kimmel, Mark W.; Kimmel, Mark W.; Knapp, Patrick K.; Knapp, Patrick K.; Perea, L.; Perea, L.; Peterson, Kara J.; Peterson, Kara J.; Porter, John L.; Porter, John L.; Rambo, Patrick K.; Rambo, Patrick K.; Robertson, Grafton K.; Robertson, Grafton K.; Rochau, G.A.; Rochau, G.A.; Ruiz, Daniel E.; Ruiz, Daniel E.; Schwarz, Jens S.; Schwarz, Jens S.; Shores, Jonathon S.; Shores, Jonathon S.; Sinars, Daniel S.; Sinars, Daniel S.; Slutz, Stephen A.; Slutz, Stephen A.; Smith, Ian C.; Smith, Ian C.; Speas, Christopher S.; Speas, Christopher S.; Whittemore, K.; Whittemore, K.; Woodbury, Daniel W.; Woodbury, Daniel W.; Smith, G.E.; Smith, G.E.

Abstract not provided.

Stagnation performance scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton E.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Knapp, Patrick K.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael M.; Ruiz, Carlos L.; Chandler, Gordon A.; Webb, Timothy J.; Moore, Thomas M.; Laity, George R.; Ampleford, David A.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

Stagnation Performance Scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton E.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Knapp, Patrick K.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael M.; Ruiz, Carlos L.; Chandler, Gordon A.; Hahn, Kelly D.; Webb, Timothy J.; Moore, Thomas M.; Laity, George R.; Ampleford, David A.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

Designing And Testing New MagLIF Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, Kyle J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

MagLIF laser preheat update

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, Kyle J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens S.; Sefkow, Adam B.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Wei, M.S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Designing and testing new preheat protocols for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Peterson, Kyle J.; Glinsky, Michael E.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Porter, John L.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

Pushing Laser Pre-Heat in MagLIF

Geissel, Matthias G.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Fein, Jeffrey R.; Woodbury, Daniel W.; Davis, Daniel R.; Bliss, David E.; Scoglietti, Daniel S.; Gomez, Matthew R.; Ampleford, David A.; Awe, Thomas J.; Colombo, Anthony P.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Slutz, Stephen A.; Ruiz, Daniel E.; Peterson, Kyle J.; Smith, Ian C.; Shores, Jonathon S.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Galloway, B.R.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

Assessing stagnation magnetized liner inertial fusion stagnation conditions and identifying trends

Gomez, Matthew R.; Slutz, Stephen A.; Knapp, Patrick K.; Hahn, Kelly D.; Harding, Eric H.; Ampleford, David A.; Awe, Thomas J.; Geissel, Matthias G.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Myers, Clayton E.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.; Weis, Matthew R.; Yager-Elorriaga, David A.

Abstract not provided.

Assessing Magnetized Liner Inertial Fusion stagnation conditions and identifying trends

Gomez, Matthew R.; Slutz, Stephen A.; Knapp, Patrick K.; Hahn, Kelly D.; Harding, Eric H.; Ampleford, David A.; Awe, Thomas J.; Geissel, Matthias G.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Myers, Clayton E.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.; Weis, Matthew R.; Yager-Elorriaga, David A.

Abstract not provided.

Results 1–50 of 215
Results 1–50 of 215