Publications

5 Results
Skip to search filters

Safe Deactivation of Energetic Materials and Use of By-products as Epoxy Curing Agents

Walker, Pamela K.; Massis, Thomas M.; Patton, Robert T.; Tadros, Maher E.; Reber, Stephen D.

Sandia National Laboratories is developing innovative alternative technology to replace open burn/open detonation (OB/OD) operations for the destruction and disposal of obsolete, excess, and off-spec energetic materials. Alternatives to OB/OD are necessary to comply with increasingly stringent regulations. This program is developing an alternative technology to destruct energetic materials using organic amines with minimal discharge of toxic chemicals to the environment and defining the application of the by-products for the manufacture of structural materials.

More Details

IMS applications analysis

Rodacy, Philip J.; Reber, Stephen D.; Simonson, Robert J.; Hance, Bradley G.

This report examines the market potential of a miniature, hand-held Ion Mobility Spectrometer. Military and civilian markets are discussed, as well as applications in a variety of diverse fields. The strengths and weaknesses of competing technologies are discussed. An extensive Ion Mobility Spectrometry (IMS) bibliography is included. The conclusions drawn from this study are: (1) There are a number of competing technologies that are capable of detecting explosives, drugs, biological, or chemical agents. The IMS system currently represents the best available compromise regarding sensitivity, specificity, and portability. (2) The military market is not as large as the commercial market, but the military services are more likely to invest R and D funds in the system. (3) Military applications should be addressed before commercial applications are addressed. (4) There is potentially a large commercial market for rugged, hand-held Ion Mobility Spectrometer systems. Commercial users typically do not invest R and D funds in this type of equipment rather, they wait for off-the-shelf availability.

More Details

Rapid, automated gas chromatographic detection of organic compounds in ultra-pure water

Ultrapure Water

Mowry, Curtis D.; Blair, Dianna S.; Morrison, Dennis J.; Reber, Stephen D.; Rodacy, Philip J.; Blair, Dianna S.

An automated gas chromatography was used to analyze water samples contaminated with trace (parts-per-billion) concentrations of organic analytes. A custom interface introduced the liquid sample to the chromatography. This was followed by rapid chromatographic analysis. Characteristics of the analysis include response times less than one minute and automated data processing. Analytes were chosen based on their known presence in the recycle water streams of semiconductor manufacturers and their potential to reduce process yield. These include acetone, isopropanol, butyl acetate, ethyl benzene, p-xylene, methyl ethyl ketone and 2-ethoxy ethyl acetate. Detection limits below 20 ppb were demonstrated for all analytes and quantitative analysis with limited speciation was shown for multianalyte mixtures. Results are discussed with respect to the potential for on-line liquid process monitoring by this method.

More Details
5 Results
5 Results