Publications

69 Results
Skip to search filters

Electrodeposition of Complex High Entropy Oxides via Water Droplet Formation and Conversion to Crystalline Alloy Nanoparticles

Langmuir

Percival, Stephen P.; Lu, Ping L.; Lowry, Daniel R.; Nenoff, T.M.

A combination of electrodeposition and thermal reduction methods have been utilized for the synthesis of ligand-free FeNiCo alloy nanoparticles through a high-entropy oxide intermediate. These phases are of great interest to the electrocatalysis community, especially when formed by a sustainable chemistry method. This is successfully achieved by first forming a complex five element amorphous FeNiCoCrMn high-entropy oxide (HEO) phase via electrodeposition from a nanodroplet emulsion solution of the metal salt reactants. The amorphous oxide phase is then thermally treated and reduced at 570-600 °C to form the crystalline FeNiCo alloy with a separate CrMnOx cophase. The FeNiCo alloy is fully characterized by scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy elemental analysis and is identified as a face-centered cubic crystal with the lattice constant a = 3.52 Å. The unoptimized, ligand-free FeNiCo NPs activity toward the oxygen evolution reaction is evaluated in alkaline solution and found to have an ∼185 mV more cathodic onset potential than the Pt metal. Beyond being able to synthesize highly crystalline, ligand-free FeNiCo nanoparticles, the demonstrated and relatively simple two-step process is ideal for the synthesis of tailor-made nanoparticles where the desired composition is not easily achieved with classical solution-based chemistries.

More Details

A high-voltage, low-temperature molten sodium battery enabled by metal halide catholyte chemistry

Cell Reports Physical Science

Gross, Martha S.; Percival, Stephen P.; Lee, Rose Y.; Peretti, Amanda S.; Spoerke, Erik D.; Small, Leo J.

Despite its promise as a safe, reliable system for grid-scale electrical energy storage, traditional molten sodium (Na) battery deployment remains limited by cost-inflating high-temperature operation. Here, we describe a high-performance sodium iodide-gallium chloride (NaI-GaCl3) molten salt catholyte that enables a dramatic reduction in molten Na battery operating temperature from near 300°C to 110°C. We demonstrate stable, high-performance electrochemical cycling in a high-voltage (3.65 V) Na-NaI battery for >8 months at 110°C. Supporting this demonstration, characterization of the catholyte physical and electrochemical properties identifies critical composition, voltage, and state of charge boundaries associated with this enabling inorganic molten salt electrolyte. Symmetric and full cell testing show that the catholyte salt can support practical current densities in a low-temperature system. Collectively, these studies describe the critical catholyte properties that may lead to the realization of a new class of low-temperature molten Na batteries.

More Details

Bio-inspired incorporation of phenylalanine enhances ionic selectivity in layer-by-layer deposited polyelectrolyte films

Soft Matter

Percival, Stephen P.; Russo, Sara R.; Priest, Chad; Hill, Ryan C.; Ohlhausen, J.A.; Small, Leo J.; Rempe, Susan R.; Spoerke, Erik D.

The addition of a common amino acid, phenylalanine, to a Layer-by-Layer (LbL) deposited polyelectrolyte (PE) film on a nanoporous membrane can increase its ionic selectivity over a PE film without the added amino acid. The addition of phenylalanine is inspired by detailed knowledge of the structure of the channelrhodopsins family of protein ion channels, where phenylalanine plays an instrumental role in facilitating sodium ion transport. The normally deposited and crosslinked PE films increase the cationic selectivity of a support membrane in a controllable manner where higher selectivity is achieved with thicker PE coatings, which in turn also increases the ionic resistance of the membrane. The increased ionic selectivity is desired while the increased resistance is not. We show that through incorporation of phenylalanine during the LbL deposition process, in solutions of NaCl with concentrations ranging from 0.1 to 100 mM, the ionic selectivity can be increased independently of the membrane resistance. Specifically, the addition is shown to increase the cationic transference of the PE films from 81.4% to 86.4%, an increase on par with PE films that are nearly triple the thickness while exhibiting much lower resistance compared to the thicker coatings, where the phenylalanine incorporated PE films display an area specific resistance of 1.81 Ω cm2in 100 mM NaCl while much thicker PE membranes show a higher resistance of 2.75 Ω cm2in the same 100 mM NaCl solution.

More Details

Evaluation of electrodialysis desalination performance of novel bioinspired and conventional ion exchange membranes with sodium chloride feed solutions

Membranes

Hyder, AHM G.; Morales, Brian A.; Cappelle, Malynda A.; Percival, Stephen P.; Small, Leo J.; Spoerke, Erik D.; Rempe, Susan R.; Walker, W.S.

Electrodialysis (ED) desalination performance of different conventional and laboratoryscale ion exchange membranes (IEMs) has been evaluated by many researchers, but most of these studies used their own sets of experimental parameters such as feed solution compositions and concentrations, superficial velocities of the process streams (diluate, concentrate, and electrode rinse), applied electrical voltages, and types of IEMs. Thus, direct comparison of ED desalination performance of different IEMs is virtually impossible. While the use of different conventional IEMs in ED has been reported, the use of bioinspired ion exchange membrane has not been reported yet. The goal of this study was to evaluate the ED desalination performance differences between novel laboratory-scale bioinspired IEM and conventional IEMs by determining (i) limiting current density, (ii) current density, (iii) current efficiency, (iv) salinity reduction in diluate stream, (v) normalized specific energy consumption, and (vi) water flux by osmosis as a function of (a) initial concentration of NaCl feed solution (diluate and concentrate streams), (b) superficial velocity of feed solution, and (c) applied stack voltage per cell-pair of membranes. A laboratory-scale single stage batchrecycle electrodialysis experimental apparatus was assembled with five cell-pairs of IEMs with an active cross-sectional area of 7.84 cm2. In this study, seven combinations of IEMs (commercial and laboratory-made) were compared: (i) Neosepta AMX/CMX, (ii) PCA PCSA/PCSK, (iii) Fujifilm Type 1 AEM/CEM, (iv) SUEZ AR204SZRA/CR67HMR, (v) Ralex AMH-PES/CMH-PES, (vi) Neosepta AMX/Bare Polycarbonate membrane (Polycarb), and (vii) Neosepta AMX/Sandia novel bioinspired cation exchange membrane (SandiaCEM). ED desalination performance with the Sandia novel bioinspired cation exchange membrane (SandiaCEM) was found to be competitive with commercial Neosepta CMX cation exchange membrane.

More Details

Electrochemistry of the NaI-AlBr3Molten Salt System: A Redox-Active, Low-Temperature Molten Salt Electrolyte

Journal of the Electrochemical Society

Percival, Stephen P.; Lee, Rose Y.; Gross, Martha S.; Peretti, Amanda S.; Small, Leo J.; Spoerke, Erik D.

NaI-AlBr3 is a very appealing low melting temperature (<100 C), salt system for use as an electrochemically-active electrolyte. This system was investigated for its electrochemical and physical properties with focus to energy storage considerations. A simple phase diagram was generated; at >100 C, lower NaI concentrations had two partially miscible liquid phases, while higher NaI concentrations had solid particles. Considering the fully molten regime, electrical conductivities were evaluated over 5-25 mol% NaI and 110 C-140 C. Conductivities of 6.8-38.9 mS cm-1 were observed, increasing with temperature and NaI concentration. Effective diffusion coefficients of the I-/I3- redox species were found to decrease with both increasing NaI concentration and increasing applied potential. Regardless, oxidation current density at 3.6 V vs Na/Na+ was observed to increase with increasing NaI concentration over 5-25 mol%. Finally, the critical interface between the molten salt electrolyte and electrode materials was found to significantly affect reaction kinetics. When carbon was used instead of tungsten, an adsorbed species, most likely I2, blocked surface sites and significantly decreased current densities at high potentials. This study shows the NaI-AlBr3 system offers an attractive, low-temperature molten salt electrolyte that could be useful to many applied systems, though composition and electrode material must be considered.

More Details

Continuous mof membrane-based sensors via functionalization of interdigitated electrodes

Membranes

Henkelis, Susan E.; Percival, Stephen P.; Small, Leo J.; Rademacher, David R.; Nenoff, T.M.

Three M-MOF-74 (M = Co, Mg, Ni) metal-organic framework (MOF) thin film membranes have been synthesized through a sensor functionalization method for the direct electrical detection of NO2. The two-step surface functionalization procedure on the glass/Pt interdigitated electrodes resulted in a terminal carboxylate group, with both steps confirmed through infrared spectroscopic analysis. This surface functionalization allowed the MOF materials to grow largely in a uniform manner over the surface of the electrode forming a thin film membrane over the Pt sensing elec-trodes. The growth of each membrane was confirmed through scanning electron microscopy (SEM) and X-ray diffraction analysis. The Ni and Mg MOFs grew as a continuous but non-defect free membrane with overlapping polycrystallites across the glass surface, whereas the Co-MOF-74 grew dis-continuously. To demonstrate the use of these MOF membranes as an NO2 gas sensor, Ni-MOF-74 was chosen as it was consistently fabricated as the best thin and homogenous membrane, as confirmed by SEM. The membrane was exposed to 5 ppm NO2 and the impedance magnitude was observed to decrease 123× in 4 h, with a larger change in impedance and a faster response than the bulk material. Importantly, the use of these membranes as a sensor for NO2 does not require them to be defect-free, but solely continuous and overlapping growth.

More Details

Tin-based ionic chaperone phases to improve low temperature molten sodium-NaSICON interfaces

Journal of Materials Chemistry A

Gross, Martha S.; Small, Leo J.; Peretti, Amanda S.; Percival, Stephen P.; Rodriguez, Mark A.; Spoerke, Erik D.

High temperature operation of molten sodium batteries impacts cost, reliability, and lifetime, and has limited the widespread adoption of these grid-scale energy storage technologies. Poor charge transfer and high interfacial resistance between molten sodium and solid-state electrolytes, however, prevents the operation of molten sodium batteries at low temperatures. Here, in situ formation of tin-based chaperone phases on solid state NaSICON ion conductor surfaces is shown in this work to greatly improve charge transfer and lower interfacial resistance in sodium symmetric cells operated at 110 °C at current densities up to an aggressive 50 mA cm-2. It is shown that static wetting testing, as measured by the contact angle of molten sodium on NaSICON, does not accurately predict battery performance due to the dynamic formation of a chaperone NaSn phase during cycling. This work demonstrates the promise of sodium intermetallic-forming coatings for the advancement of low temperature molten sodium batteries by improved mating of sodium-NaSICON surfaces and reduced interfacial resistance.

More Details

Polyelectrolyte layer-by-layer deposition on nanoporous supports for ion selective membranes

RSC Advances

Percival, Stephen P.; Small, Leo J.; Spoerke, Erik D.; Rempe, Susan R.

This work demonstrates that the ionic selectivity and ionic conductivity of nanoporous membranes can be controlled independently via layer-by-layer (LbL) deposition of polyelectrolytes and subsequent selective cross-linking of these polymer layers. LbL deposition offers a scalable, inexpensive method to tune the ion transport properties of nanoporous membranes by sequentially dip coating layers of cationic polyethyleneimine and anionic poly(acrylic acid) onto polycarbonate membranes. The cationic and anionic polymers are self-assembled through electrostatic and hydrogen bonding interactions and are chemically crosslinked to both change the charge distribution and improve the intermolecular integrity of the deposited films. Both the thickness of the deposited coating and the use of chemical cross-linking agents influence charge transport properties significantly. Increased polyelectrolyte thickness increases the selectivity for cationic transport through the membranes while adding polyelectrolyte films decreases the ionic conductivity compared to an uncoated membrane. Once the nanopores are filled, no additional decrease in conductivity is observed with increasing film thickness and, upon cross-linking, a portion of the lost conductivity is recovered. The cross-linking agent also influences the ionic selectivity of the resulting polyelectrolyte membranes. Increased selectivity for cationic transport occurs when using glutaraldehyde as the cross-linking agent, as expected due to the selective cross-linking of primary amines that decreases the net positive charge. Together, these results inform deposition of chemically robust, highly conductive, ion-selective membranes onto inexpensive porous supports for applications ranging from energy storage to water purification.

More Details
69 Results
69 Results