Publications

10 Results
Skip to search filters

Long-range transition state theory

Journal of Chemical Physics

Georgievskii, Yuri; Klippenstein, Stephen J.

The implementation of variational transition state theory (VTST) for long-range asymptotic potential forms is considered, with particular emphasis on the energy and total angular momentum resolved (μJ -VTST) implementation. A long-range transition state approximation yields a remarkably simple and universal description of the kinetics of reactions governed by long-range interactions. The resulting (μJ -VTST) implementation is shown to yield capture-rate coefficients that compare favorably with those from trajectory simulations (deviating by less than 10%) for a wide variety of neutral and ionic long-range potential forms. Simple analytic results are derived for many of these cases. A brief comparison with a variety of low-temperature experimental studies illustrates the power of this approach as an analysis tool. The present VTST approach allows for a simple analysis of the applicability conditions for some related theoretical approaches. It also provides an estimate of the temperature or energy at which the "long-range transition state" moves to such short separations that short-range effects, such as chemical bonding, steric repulsion, and electronic state selectivity, must be considered. © 2005 American Institute of Physics.

More Details

The reaction of acetylene with hydroxyl radicals

Proposed for publication in Journal of Physical Chemistry A.

Senosiain, Juan P.; Klippenstein, Stephen J.; Miller, James A.

The potential energy surface for the reaction between OH and acetylene has been calculated using the RQCISD(T) method and extrapolated to the complete basis-set limit. Rate coefficients were determined for a wide range of temperatures and pressures, based on this surface and the solution of the one-dimensional and two-dimensional master equations. With a small adjustment to the association energy barrier (1.1 kcal/mol), agreement with experiments is good, considering the discrepancies in such data. The rate coefficient for direct hydrogen abstraction is significantly smaller than that commonly used in combustion models. Also in contrast to previous models, ketene + H is found to be the main product at normal combustion conditions. At low temperatures and high pressures, stabilization of the C{sub 2}H{sub 2}OH adduct is the dominant process. Rate coefficient expressions for use in modeling are provided.

More Details

Channel specific rate constants relevant to the thermal decomposition of disilane

Proposed for publication in J. Phys. Chem. A.

Klippenstein, Stephen J.

Rate constants for the thermal dissociation of Si{sub 2}H{sub 6} are predicted with a novel transition state model. The saddle points for dissociation on the Si{sub 2}H{sub 6} potential energy surface are lower in energy than the corresponding separated products, as confirmed by high level ab initio quantum mechanical calculations. Thus, the dissociations of Si{sub 2}H{sub 6} to produce SiH{sub 2} + SiH{sub 4} (R1) and H{sub 3}SiSiH + H{sub 2} (R2) both proceed through tight inner transition states followed by loose outer transition states. The present 'dual' transition state model couples variational phase space theory treatments of the outer transition states with ab initio based fixed harmonic vibrator treatments of the inner transition states to obtain effective numbers of states for the two transition states acting in series. It is found that, at least near room temperature, such a dual transition state model is generally required for the proper description of each of the dissociations. Only at quite high temperatures, i.e., above 2000 K for (R1) and 600 K for (R2), does a single fixed inner transition state provide an adequate description. Similarly, only at quite low temperatures (below 100 and 10 K for (R1) and (R2), respectively) does a single outer transition state provide an adequate description. Pressure dependent rate constants are obtained from solutions to the multichannel master equation. These calculations confirm that dissociation channel (R2) is negligible under conditions relevant to the thermal chemical vapor deposition (CVD) processes. Rate constants for the chemical activation reactions, SiH{sub 2} + SiH{sub 4} {yields} Si{sub 2}H{sub 6} (R-1) and SiH{sub 2} + SiH{sub 4} {yields} H{sub 3}SiSiH + H{sub 2} (R3), are also evaluated within the dual transition state model. It is found that reaction R3 is the dominant channel for low pressures and high temperatures, i.e., below 100 Torr for temperatures above 1100 K.

More Details

The addition of hydrogen atoms to diacetylene and the heats of formation of i-C4H3 and n-C4H3

Proposed for publication in the Journal of Physical Chemistry A.

Klippenstein, Stephen J.

In this article, we discuss in detail the addition of hydrogen atoms to diacetylene and the reverse dissociation reactions, H + C{sub 4}H{sub 2} {leftrightarrow} i-C{sub 4}H{sub 3} (R1) and H + C{sub 4}H{sub 2} n-C{sub 4}H{sub 3} (R2). The theory utilizes high-level electronic structure methodology to characterize the potential energy surface, Rice-Ramsperger-Kassel-Marcus (RRKM) theory to calculate microcanonical/J-resolved rate coefficients, and a two-dimensional master-equation approach to extract phenomenological (thermal) rate coefficients. Comparison is made with experimental results where they are available. The rate coefficients k{sub 1}(T, p) and k{sub 2}(T, p) are cast in forms that can be used in chemical kinetic modeling. In addition, we predict values of the heats of formation of i-C{sub 4}H{sub 3} and n-C{sub 4}H{sub 3} and discuss their importance in flame chemistry. Our basis-set extrapolated, quadratic-configuration-interaction with single and double excitations (and triple excitations added perturbatively), QCISD(T), predictions of these heats of formation at 298 K are 130.8 kcal/mol for n-C{sub 4}H{sub 3} and 119.3 kcal/mol for the i-isomer; multireference CI calculations with a nine-electron, nine-orbital, complete-active-space (CAS) reference wavefunction give just slightly larger values for these parameters. Our results are in good agreement with the recent focal-point analysis of Wheeler et al. (J. Chem. Phys. 2004, 121, 8800-8813), but they differ substantially for {Delta} H{sub f 298}{sup 0}(n-C{sub 4}H{sub 3}) with the earlier diffusion Monte Carlo predictions of Krokidis et al.

More Details

Direct measurement and theoretical calculation of the rate coefficient for Cl + CH3 from T = 202 - 298 K

Proposed for publication in J. Phys. Chem. A.

Klippenstein, Stephen J.

The rate coefficient has been measured under pseudo-first-order conditions for the Cl + CH{sub 3} association reaction at T = 202, 250, and 298 K and P = 0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH{sub 3} were generated rapidly and simultaneously by reaction of F with HCl and CH{sub 4}, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F{sub 2} in He. The decay of CH{sub 3} was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH{sub 3} concentration ([Cl]{sub 0}/[CH{sub 3}]{sub 0} = 9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T = 202 K, the rate coefficient increases from 8.4 x 10{sup -12} at P = 0.30 Torr He to 1.8 x 10{sup -11} at P = 2.00 Torr He, both in units of cm{sup 3} molecule{sup -1} s{sup -1}. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k{sub 2} = 6.0 x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1}, independent of temperature in the range from 200 to 300 K.

More Details

Measurements and modeling of HO2 formation in the reactions of n-C3H7 and i-C3H7 radicals with O2

Proposed for publication in Journal of Physical Chemistry.

Estupinan, Edgar G.; Klippenstein, Stephen J.

The formation of HO{sub 2} in the reactions of C{sub 2}H{sub 5}, n-C{sub 3}H{sub 7}, and i-C{sub 3}H{sub 7} radicals with O{sub 2} is investigated using the technique of laser photolysis/long-path frequency-modulation spectroscopy. The alkyl radicals are formed by 266 nm photolysis of alkyl iodides. The formation of HO{sub 2} from the subsequent reaction of the alkyl radicals with O{sub 2} is followed by infrared frequency-modulation spectroscopy. The concentration of I atoms is simultaneously monitored by direct absorption of a second laser probe on the spin?orbit transition. The measured profiles are compared to a kinetic model taken from time-resolved master-equation results based on previously published ab initio characterizations of the relevant stationary points on the potential-energy surface. The ab initio energies are adjusted to produce agreement with the present experimental data and with available literature studies. The isomer specificity of the present results enables refinement of the model for i-C{sub 3}H{sub 7} + O{sub 2} and improved agreement with experimental measurements of HO{sub 2} production in propane oxidation.

More Details
10 Results
10 Results