Publications

7 Results
Skip to search filters

COTS Data Analytics Software User Manual: Version 1.0

Stork, Chris L.; Fan, Wesley C.; Hwang, Stephen C.

Large volumes of data are being collected by Sandia National Laboratories as part of an active commercial-off-the-shelf (COTS) part testing and surveillance program. This user manual documents Python-based COTS Data Analytics software that has been developed for standardizing, displaying, visualizing, and analyzing the resulting COTS part testing and surveillance data. It is the objective of these software tools to streamline the analysis of COTS testing and surveillance data and improve the efficiency with which test engineers and data analytics experts can pinpoint possible performance and reliability problems in COTS parts.

More Details

Study of methods for automated crack inspection of electrically poled piezoelectric ceramics

Burns, George B.; Yang, Pin Y.; Jokiel, Bernhard J.; Hwang, Stephen C.

The goal of this project was to identify a viable, non-destructive methodology for the detection of cracks in electrically poled piezoelectric ceramics used in neutron generator power supply units. The following methods were investigated: Impedance Spectroscopy, Scanning Acoustic Microscopy, Lock-in Thermography, Photo-acoustic Microscopy, and Scanned Vicinal Light. In addition to the exploration of these techniques for crack detection, special consideration was given to the feasibility of integrating these approaches to the Automatic Visual Inspection System (AVIS) that was developed for mapping defects such as chips, pits and voids in piezoelectric ceramic components. Scanned Vicinal Light was shown to be the most effective method of automatically detecting and quantifying cracks in ceramic components. This method is also very effective for crack detection in other translucent ceramics.

More Details

A finite element model of ferroelectric/ferroelastic polycrystals

Hwang, Stephen C.

A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

More Details
7 Results
7 Results