Graphene Integration: Film Synthesis and Device Fabrication
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Applied
Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW/cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.
Abstract not provided.
Optics Express
We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm-1. Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here isapplicable across a broad range of infrared frequencies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Conference on Optical MEMS and Nanophotonics
We have demonstrated a scalable dual-band tunable infrared filter based on gating of a continuous graphene layer. The measured and modeled response of the device are in good agreement.
International Conference on Optical MEMS and Nanophotonics
We examine the vacuum infrared photoresponse of a large-area nanoantenna-coupled tunnel diode rectenna resulting from thermal radiation from a temperature controlled heater. The measured infrared photocurrent is obtained as a function of the source temperature, sample distance and view factor. Far-field radiation power conversion is examined using standard radiometric techniques and correlated with the rectified current response.
Abstract not provided.
IEEE Transactions on Applied Superconductivity
Properties of NbN and TaxN thin films grown at ambient temperatures on SiO2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N2 gas flow were investigated. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N2 gas flow during growth. High crystalline quality, (111) oriented NbN films with Tc up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the TaxN films depended upon both the N2 partial pressure used during growth and the film thickness. The root mean square surface roughness of TaxN films grown by MS increased as the film thickness decreased down to 10 nm.
Abstract not provided.
Abstract not provided.
Optics Express
We have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectricdependent. These simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength and wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.
We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.
We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Conversion of plane waves to surface waves prior to detection allows key advantages in changes to the architecture of the detector pixels in a focal plane array. We have integrated subwavelength patterned metal nanoantennas with various detector materials to incorporate these advantages: midwave infrared indium gallium arsenide antimonide detectors and longwave infrared graphene detectors. Nanoantennas offer a means to make infrared detectors much thinner by converting incoming plane waves to more tightly bound and concentrated surface waves. Thinner architectures reduce both dark current and crosstalk for improved performance. For graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass plane wave absorption is insufficient. Using III-V detector material, we reduced thickness by over an order of magnitude compared to traditional devices. We will discuss Sandia's motivation for these devices, which go beyond simple improvement in traditional performance metrics. The simulation methodology and design rules will be discussed in detail. We will also offer an overview of the fabrication processes required to make these subwavelength structures on at times complex underlying devices based on III-V detector material or graphene on silicon or silicon carbide. Finally, we will present our latest infrared detector characterization results for both III-V and graphene structures.
Journal of Materials Research
Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO3 layer. The WO3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grown by thermal chemical vapor deposition, with W also serving as a back electrical contact. Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.
Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
New Journal of Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.
Abstract not provided.
Not submitted at this time
Abstract not provided.
New Journal of Physiscs
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
This paper presents the development of a sensor to detect the oxidative and radiation induced degradation of polypropylene. Recently we have examined the use of crosslinked assemblies of nanoparticles as a chemiresistor-type sensor for the degradation products. We have developed a simple method that uses a siloxane matrix to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. These sensors were exposed with the use of a gas chromatography system to three previously identified polypropylene degradation products including 4-methyl-2-pentanone, acetone, and 2-pentanone. The limits of detection 210 ppb for 4-methy-2-pentanone, 575 ppb for 2-pentanone, and the LoD was unable to be determined for acetone due to incomplete separation from the carbon disulfide carrier.
Abstract not provided.
Abstract not provided.
Journal of Nanomaterials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Molecular electronic based chemical vapor sensors were assembled using noble metal nanoparticles and short conjugated phenylene ethynylene (PE) based molecules. Sacrificial capping ligands on the nanoparticles were replaced by tighter binding PE ligands. The films were assembled between pairs of electrodes by iteratively exposing the substrates to solutions of the nanoparticles and PE crosslinking bridging ligands. Some of the conjugated bridging molecules contained an electron deficient phenol to provide a simple platform for developing sensor applications. The phenol is calculated to have a significant change in its HOMO/LUMO gap in the presence of specific analytes. Judicious combination of nanoparticle size and ligand structure provides a film in which the organic bridging ligands dramatically affect film conductance. Specifically, {pi}-conjugated ligands lower resistance more in films with smaller particles. Thus the sensing mechanism of these films is not based on the typical swelling mechanism but rather on the modulation of the molecular electronic structure of the conducting PE bridging ligands. Interdigitated Au electrodes built on quartz substrates were first silanized with tetrakis(dimethylamino)silane. The remaining amino functionalities were displaced with 1,8-octanedithiol (ODT) to give a thiolated surface capable of binding nanoparticles. The substrate was then incubated in a solution of dodecylamine-capped nanoparticles. The film thickness was increased via alternating exposure to solutions of bifunctional crosslinking molecules and nanoparticles (Figure 1). Nanoparticles and assembled films were characterized by TEM and AFM prior to electrical characterization. After verifying the selectivity of this new attachment chemistry, a novel robotic sample preparation was employed to build nanoparticle films of different thickness on prepared electrodes. By preparing the nanoparticle films using a robot, many problems with irregularities of the deposited films were eliminated. This sample preparation system was designed with the capability to measure the resistivity of the nanoparticle films after assembly of each layer. Using such a sample preparation system is vital for developing mass-produced sensors from nanoparticle films. The robotic system was used to deposit and measure the electrical properties of Pt and Au nanoparticles linked with different ligands such as ODT and meta-PE diisocyanide. Figure 2 is a plot showing the resistance vs. film layer for several combinations of nanoparticles and linker-ligands. The data shows that the resistance of the film drops and eventually saturates as additional nanoparticle layers are deposited. There is also an inversion in the resistance per layer that depends on the nanoparticle's type and the ligand used to crosslink the film. This data is significant because it shows how the selection of certain nanoparticle properties (such as size and material) and selection of an appropriate linking ligand can be used to tune the conductance of a film composed of nanoparticles. It is well known that smaller nanoparticles have a higher charging potential. This coupled with the inherent variability of organic molecules ensures that a film in which the organic molecules dominate conductivity can be achieved. In addition to the experiments above, nanoparticle films were assembled using cross-linkers that can be modified by an analyte. Figure 3 shows a typical I(V) curve for a Au nanoparticle film crosslinked with a phenylene ethynylene based electron deficient phenol. There is a clear reversible change in the resistance of the film when exposed first to acid and then base. The generation of a new response mechanism for nanoparticle films greatly increases the scope of organic/nanoparticle films for sensor applications. Their crosslinked nature increases their robustness and allows for use in both aqueous as well as organic solutions. In summary, we have developed a novel reproducible sample preparation system for the deposition of crosslinked nanoparticle films on a variety of substrates. This system has the ability to acquire electrical data during the sample deposition. Data collected for several nanoparticle film depositions demonstrated the ability to tune the conduction of the film by the selection of nanoparticle size and the cross-linking ligand. The material we have developed is a hybrid intermediate between a true organic conducting polymer and a classical nanoparticle film. The nanoparticles provide a scaffold on which to assemble various conducting/sensing oligomers and ligands without the problems inherent to conducting polymers.
Proposed for publication in Chemistry Letters.
Abstract not provided.
Proposed for publication in Chemical Communications.
Nanoparticles have received much attention and have been the subject of many reviews. Nanoparticles have also been used to form super molecular structures for molecular electronic, and sensor applications. However, many limitations exist when using nanoparticles, including the ability to manipulate the particles post synthesis. Current methods to prepare nanoparticles employ functionalities like thiols, amines, phosphines, isocyanides, or a citrate as the metal capping agent. While these capping agents prevent agglomeration or precipitation of the particles, most are difficult to displace or impede packing in nanoparticle films due to coulombic repulsion. It is in this vein that we undertook the synthesis of nanoparticles that have a weakly bound capping agent that is strong enough to prevent agglomeration and in the case of the platinum particles allow for purification, but yet, easily displaced by other strongly binding ligands. The nanoparticles where synthesized according to the Brust method except stearonitrile was used instead of an aliphatic thiol. Both platinum and gold were examined in this manner. A representative procedure for the synthesis of platinum nanoparticles involved the phase transfer of chloroplatinic acid (0.37 g, 0.90 mmol) dissolved in water (30 mL) to a solution of tetraoctylammonium bromide (2.2 g, 4.0 mmol) in toluene (80 mL). After the chloroplatinic acid was transferred into the organic phase the aqueous phase was removed. Stearonitrile (0.23 g, 0.87 mmol) was added and sodium borohydride (0.38 g, 49 mmol) in water (25 mL) was added. The solution turned black almost immediately and after 15 min the organic phase was separated and passed through a 0.45 {micro}m Teflon filter. The resulting solution was concentrated and twice precipitated into ethanol ({approx}200 mL) to yield 0.11 g of black platinum nanoparticles. TGA experiments showed that the Pt particles contained 35% by mass stearonitrile. TEM images showed an average particle size of 1.3 {+-} 0.3 nm. A representative procedure for the synthesis of gold nanoparticles involved the transfer of hydrogen tetrachloroaurate (0.18 g, 0.53 mmol) dissolved in water (15 mL) to a solution of tetraoctylammonium bromide (1.1 g, 2.0 mmol) in toluene (40 mL). After the gold salt transferred into the organic phase the aqueous phase was removed. Stearonitrile (0.23 g, 0.87 mmol) was added and sodium borohydride (0.19 g, 5.0 mmol) in water (13 mL) was added. The solution turned dark red almost immediately, and after 15 min the organic phase was separated and passed through a 0.45 {micro}m Teflon filter. The resulting solution was used without purification via precipitation because attempts at precipitation with ethanol resulted in agglomeration. TEM images showed an average particle size of 5.3 {+-} 1.3 nm. The nanoparticles synthesized were also characterized using atomic force microscopy in tapping mode. The AFM images agree with the TEM images and show a relatively monodispersed collection of nanoparticles. Platinum nanoparticles were synthesized without stearonitrile to show that the particles were in fact capped with the stearonitrile and not the tetraoctylammonium bromide. In the absence of stearonitrile the nanoparticles would not redissolve in hexane or toluene after precipitation. While it is possible the tetraoctylammonium bromide helps prevent agglomeration by solvation into the capping stearonitrile ligand layer on the particles recovery of a quantitative amount of the starting tetraoctylammonium bromide was difficult and we cannot rule out that some small amount of tetraoctylammonium bromide serves in a synergistic capacity to help solubilize the isolated platinum particles. Several exchange reactions were carried out using the isolated Pt nanoparticles. The stearonitrile cap was exchanged for hexadecylmercaptan, octanethiol, and benzeneethylthiol. In a typical exchange reaction, Pt nanoparticles (10 mg) were suspended in hexane (10 mL) and the exchange ligand was added (50 {micro}L). The solutions were allowed to stir overnight and precipitated twice using ethanol. TGA experiments confirmed ligand exchange. We have also shown that these particles may be assembled in a layer by layer (LBL) fashion to build up three dimensional assemblies. As an example of this LBL assembly a substrate consisting of gold electrodes separated by 8 {micro}m on a quartz wafer was first functionalized by immersing in a solution of 1,8-octanedithiol (50 {micro}L) in hexane (10 mL) for 15 min, rinsed with hexane (10 mL), ethanol (10 mL), and dried under a stream of nitrogen. The scaffold was then placed in a toluene solution containing Au nanoparticles capped with stearonitrile (10 mg/mL) for 15 minutes. The scaffold was then rinsed with hexane (10 mL), ethanol (10 mL), and dried under a stream of nitrogen. The substrate was then immersed iteratively between the 1,8-octanedithiol and the Au nanoparticle solution 4 more times.