Publications

180 Results
Skip to search filters

Fatigue-driven acceleration of abnormal grain growth in nanocrystalline wires

Modelling and Simulation in Materials Science and Engineering

Foiles, Stephen M.; Abdeljawad, Fadi F.; Moore, Alexander M.; Boyce, Brad B.

Molecular dynamics simulations were employed to simulate the mechanical response and grain evolution in a Ni nanowire for both static and cyclic loading conditions at both 300 and 500 K for periods of 40 ns. The loading conditions included thermal annealing with no deformation, constant 1% extension (creep loading) and cyclic loading with strain amplitudes of 0.5% and 1% for 200 cycles. Under cyclic loading, the stress-strain response showed permanent deformation and cyclic hardening behavior. At 300 K, modest grain evolution was observed at all conditions within the 40 ns simulations. At 500 K, substantial grain growth is observed in all cases, but is most pronounced under cyclic loading. This may result mechanistically from a net motion of the boundaries associated with boundary ratcheting. There is a striking qualitative consistency between the present simulation results and the experimental observation of abnormal grain growth in nanocrystalline metals as a precursor to fatigue crack initiation.

More Details

New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys

Nanoscale

Heckman, Nathan H.; Foiles, Stephen M.; O'Brien, Christopher J.; Chandross, M.; Barr, Christopher M.; Argibay, Nicolas A.; Hattar, Khalid M.; Lu, Ping L.; Adams, David P.; Boyce, Brad B.

Nanocrystalline metals offer significant improvements in structural performance over conventional alloys. However, their performance is limited by grain boundary instability and limited ductility. Solute segregation has been proposed as a stabilization mechanism, however the solute atoms can embrittle grain boundaries and further degrade the toughness. In the present study, we confirm the embrittling effect of solute segregation in Pt-Au alloys. However, more importantly, we show that inhomogeneous chemical segregation to the grain boundary can lead to a new toughening mechanism termed compositional crack arrest. Energy dissipation is facilitated by the formation of nanocrack networks formed when cracks arrested at regions of the grain boundaries that were starved in the embrittling element. This mechanism, in concert with triple junction crack arrest, provides pathways to optimize both thermal stability and energy dissipation. A combination of in situ tensile deformation experiments and molecular dynamics simulations elucidate both the embrittling and toughening processes that can occur as a function of solute content.

More Details

Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

Journal of Materials Science

O'Brien, Christopher J.; Barr, Christopher M.; Price, Patrick M.; Hattar, Khalid M.; Foiles, Stephen M.

There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction that grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.

More Details

Local Variability of the Peierls Barrier of Screw Dislocations in Ta-10W

Foiles, Stephen M.

It is well know that the addition of substitutional elements changes the mechanical behavior of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC) metals, screw dislocation play a key role in the mechanical properties. Here the detailed modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional atoms is computing using density functional theory (DFT). A reduced order model (ROM) of the influence of W substitution on the Peierls barrier is developed. The mean field change in the Peierls barrier for a Ta10W alloy is determined and shown to be larger than anticipated based on simple elasticity considerations. The ROM could be used in future calculations to determine the local variability of the Peierls barrier and the resultant influence on the motion of screw dislocation in this alloy.

More Details

Compact Models for Defect Diffusivity in Semiconductor Alloys

Wright, Alan F.; Modine, N.A.; Lee, Stephen R.; Foiles, Stephen M.

Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority.

More Details

Hydrogen segregation to inclined twin grain boundaries in nickel

Philosophical Magazine

O'Brien, Christopher J.; Foiles, Stephen M.

Low-mobility twin grain boundaries dominate the microstructure of grain boundary-engineered materials and are critical to understanding their plastic deformation behaviour. The presence of solutes, such as hydrogen, has a profound effect on the thermodynamic stability of the grain boundaries. This work examines the case of a ∑3 grain boundary at inclinations from 0° ≤ Ф ≤ 90°. The angle ≤ corresponds to the rotation of the ∑3(111) ‹110› (coherent) into the ∑3(112) ‹110› (lateral) twin boundary. To this end, atomistic models of inclined grain boundaries, utilising empirical potentials, are used to elucidate the finite-temperature boundary structure while grand canonical Monte Carlo models are applied to determine the degree of hydrogen segregation. In order to understand the boundary structure and segregation behaviour of hydrogen, the structural unit description of inclined twin grain boundaries is found to provide insight into explaining the observed variation of excess enthalpy and excess hydrogen concentration on inclination angle, but the explanatory power is limited by how the enthalpy of segregation is affected by hydrogen concentration. At higher concentrations, the grain boundaries undergo a defaceting transition. In order to develop a more complete mesoscale model of the interfacial behaviour, an analytical model of boundary energy and hydrogen segregation that relies on modelling the boundary as arrays of discrete 1/3‹111› disconnections is constructed. Furthermore, the complex interaction of boundary reconstruction and concentration-dependent segregation behaviour exhibited by inclined twin grain boundaries limits the range of applicability of such an analytical model and illustrates the fundamental limitations for a structural unit model description of segregation in lower stacking fault energy materials.

More Details

Strain-rate dependence of ramp-wave evolution and strength in tantalum

Physical Review B

Lane, J.M.; Foiles, Stephen M.; Lim, Hojun L.; Brown, Justin L.

We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 1011 down to 108 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. We show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. This enhanced elastic response is less pronounced at higher pressures and at lower strain rates.

More Details

Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion

Journal of Materials Science

O’Brien, C.J.; Foiles, Stephen M.

The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with Σ values of 5, 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. This provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.

More Details

Misoriented grain boundaries vicinal to the twin in Nickel part II: Thermodynamics of hydrogen segregation

Philosophical Magazine

O'Brien, Christopher J.; Foiles, Stephen M.

Grain boundary engineered materials are of immense interest for their resistance to hydrogen embrittlement. This work builds on the work undertaken in Part I on the thermodynamic stability and structure of misoriented grain boundaries vicinal to the (coherent-twin) boundary to examine hydrogen segregation to those boundaries. The segregation of hydrogen reflects the asymmetry of the boundary structure with the sense of rotation of the grains about the coherent-twin boundary, and the temperature-dependent structural transition present in one sense of misorientation. This work also finds that the presence of hydrogen affects a change in structure of the boundaries with increasing concentration. The structural change effects only one sense of misorientation and results in the reduction in length of the emitted stacking faults. Moreover, the structural change results in the generation of occupied sites populated by more strongly bound hydrogen. The improved understanding of misoriented twin grain boundary structure and the effect on hydrogen segregation resulting from this work is relevant to higher length-scale models. To that end, we examine commonly used metrics such as free volume and atomic stress at the boundary. Free volume is found not to be useful as a surrogate for predicting the degree of hydrogen segregation, whereas the volumetric virial stress reliably predicts the locations of hydrogen segregation and exclusion at concentrations below saturation or the point where structural changes are induced by increasing hydrogen concentration. This manuscript has been authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

More Details

Misoriented grain boundaries vicinal to the twin in nickel Part I: Thermodynamics & temperature-dependent structure

Philosophical Magazine

O'Brien, Christopher J.; Medlin, Douglas L.; Foiles, Stephen M.

Grain boundary-engineered materials are of immense interest for their corrosion resistance, fracture resistance and microstructural stability. This work contributes to a larger goal of understanding both the structure and thermodynamic properties of grain boundaries vicinal (within) to the (coherent twin) boundary which is found in grain boundary-engineered materials. The misoriented boundaries vicinal to the twin show structural changes at elevated temperatures. In the case of nickel, this transition temperature is substantially below the melting point and at temperatures commonly reached during processing, making the existence of such boundaries very likely in applications. Thus, the thermodynamic stability of such features is thoroughly investigated in order to predict and fully understand the structure of boundaries vicinal to twins. Low misorientation angle grain boundaries () show distinct disconnections which accommodate misorientation in opposite senses. The two types of disconnection have differing lowerature structures which show different temperature-dependent behaviours with one type undergoing a structural transition at approximately 600 K. At misorientation angles greater than approximately, the discrete disconnection nature is lost as the disconnections merge into one another. Free energy calculations demonstrate that these high-angle boundaries, which exhibit a transition from a planar to a faceted structure, are thermodynamically more stable in the faceted configuration.

More Details

Determination of recombination radius in Si for binary collision approximation codes

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy V.; Foiles, Stephen M.

Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this "displacement energy" is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. The calculations showed that a single recombination radius of ∼7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.

More Details

Helium trapping at erbium oxide precipitates in erbium hydride

Foiles, Stephen M.; Battaile, Corbett C.

The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

More Details

Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

Applied Physics Letters

Bufford, Daniel C.; Abdeljawad, Fadi F.; Foiles, Stephen M.; Hattar, K.

Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

More Details

Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

Journal of Computational Physics

Thompson, Aidan P.; Swiler, Laura P.; Trott, C.R.; Foiles, Stephen M.; Tucker, G.J.

We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

More Details

Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials

Lechman, Jeremy B.; Battaile, Corbett C.; Bolintineanu, Dan S.; Cooper, Marcia A.; Erikson, William W.; Foiles, Stephen M.; Kay, Jeffrey J.; Phinney, Leslie M.; Piekos, Edward S.; Specht, Paul E.; Wixom, Ryan R.; Yarrington, Cole Y.

This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In both cases much more remains to be accomplished.

More Details

Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations

International Journal of Plasticity

Tucker, Garritt T.; Foiles, Stephen M.

Over the past decade, numerous efforts have sought to understand the influence of twin boundaries on the behavior of polycrystalline materials. Early results suggested that twin boundaries within nanocrystalline face-centered cubic metals have a considerable effect on material behavior by altering the activated deformation mechanisms. In this work, we employ molecular dynamics simulations to elucidate the role of twin boundaries on the deformation of 〈100〉 columnar nanocrystalline copper at room temperature under uniaxial strain. We leverage non-local kinematic metrics, formulated from continuum mechanics theory, to compute atomically-resolved rotational and strain fields during plastic deformation. These results are then utilized to compute the distribution of various nanoscale mechanisms during straining, and quantitatively resolve their contribution to the total strain accommodation within the microstructure, highlighting the fundamental role of twin boundaries. Our results show that nanoscale twins influence nanocrystalline copper by altering the cooperation of fundamental deformation mechanisms and their contributed role in strain accommodation, and we present new methods for extracting useful information from atomistic simulations. The simulation results suggest a tension-compression asymmetry in the distribution of deformation mechanisms and strain accommodation by either dislocations or twin boundary mechanisms. In highly twinned microstructures, twin boundary migration can become a significant deformation mode, in comparison to lattice dislocation plasticity in non-twinned columnar microstructures, especially during compression.

More Details

Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report

Thompson, Aidan P.; Schultz, Peter A.; Crozier, Paul C.; Moore, Stan G.; Swiler, Laura P.; Stephens, John A.; Trott, Christian R.; Foiles, Stephen M.; Tucker, Garritt J.

This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.

More Details

Understanding and controlling low-temperature aging of nanocrystalline materials

Battaile, Corbett C.; Boyce, Brad B.; Foiles, Stephen M.; Hattar, Khalid M.; Padilla, Henry A.; Sharon, John A.

Nanocrystalline copper lms were created by both repetitive high-energy pulsed power, to produce material without internal nanotwins; and pulsed laser deposition, to produce nan- otwins. Samples of these lms were indented at ambient (298K) and cryogenic temperatures by immersion in liquid nitrogen (77K) and helium (4K). The indented samples were sectioned through the indented regions and imaged in a scanning electron microscope. Extensive grain growth was observed in the lms that contained nanotwins and were indented cryogenically. The lms that either lacked twins, or were indented under ambient conditions, were found to exhibit no substantial grain growth by visual inspection. Precession transmission elec- tron microscopy was used to con rm these ndings quantitatively, and show that 3 and 7 boundaries proliferate during grain growth, implying that these interface types play a key role in governing the extensive grain growth observed here. Molecular dynamics sim- ulations of the motion of individual grain boundaries demonstrate that speci c classes of boundaries - notably 3 and 7 - exhibit anti- or a-thermal migration, meaning that their mobilities either increase or do not change signi cantly with decreasing temperature. An in-situ cryogenic indentation capability was developed and implemented in a transmission electron microscope. Preliminary results do not show extensive cryogenic grain growth in indented copper lms. This discrepancy could arise from the signi cant di erences in con g- uration and loading of the specimen between the two approaches, and further research and development of this capability is needed.

More Details

Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory

Physical Review. B, Condensed Matter and Materials Physics

Weinberger, Christopher R.; Tucker, Garritt T.; Foiles, Stephen M.

It is well known that screw dislocation motion dominates the plastic deformation in body-centered-cubic metals at low temperatures. The nature of the nonplanar structure of screw dislocations gives rise to high lattice friction, which results in strong temperature and strain rate dependence of plastic flow. Thus the nature of the Peierls potential, which is responsible for the high lattice resistance, is an important physical property of the material. However, current empirical potentials give a complicated picture of the Peierls potential. Here, we investigate the nature of the Peierls potential using density functional theory in the bcc transition metals. The results show that the shape of the Peierls potential is sinusoidal for every material investigated. Furthermore, we show that the magnitude of the potential scales strongly with the energy per unit length of the screw dislocation in the material.

More Details

Comparison of binary collision approximation and molecular dynamics for displacement cascades in GaAs

Foiles, Stephen M.

The predictions of binary collision approximation (BCA) and molecular dynamics (MD) simulations of displacement cascades in GaAs are compared. There are three issues addressed in this work. The first is the optimal choice of the effective displacement threshold to use in the BCA calculations to obtain the best agreement with MD results. Second, the spatial correlations of point defects are compared. This is related to the level of clustering that occurs for different types of radiation. Finally, the size and structure of amorphous zones seen in the MD simulations is summarized. BCA simulations are not able to predict the formation of amorphous material.

More Details

Fast neutron environments

Hattar, Khalid M.; Puskar, J.D.; Doyle, Barney L.; Boyce, Brad B.; Buchheit, Thomas E.; Foiles, Stephen M.; Lu, Ping L.; Clark, Blythe C.; Kotula, Paul G.; Goods, Steven H.

The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

More Details

Nanomechanics and nanometallurgy of boundaries

Boyce, Brad B.; Clark, Blythe C.; Foiles, Stephen M.; Hattar, Khalid M.; Holm, Elizabeth A.; Knapp, J.A.

One of the tenets of nanotechnology is that the electrical/optical/chemical/biological properties of a material may be changed profoundly when the material is reduced to sufficiently small dimensions - and we can exploit these new properties to achieve novel or greatly improved material's performance. However, there may be mechanical or thermodynamic driving forces that hinder the synthesis of the structure, impair the stability of the structure, or reduce the intended performance of the structure. Examples of these phenomena include de-wetting of films due to high surface tension, thermally-driven instability of nano-grain structure, and defect-related internal dissipation. If we have fundamental knowledge of the mechanical processes at small length scales, we can exploit these new properties to achieve robust nanodevices. To state it simply, the goal of this program is the fundamental understanding of the mechanical properties of materials at small length scales. The research embodied by this program lies at the heart of modern materials science with a guiding focus on structure-property relationships. We have divided this program into three Tasks, which are summarized: (1) Mechanics of Nanostructured Materials (PI Blythe Clark). This task aims to develop a fundamental understanding of the mechanical properties and thermal stability of nanostructured metals, and of the relationship between nano/microstructure and bulk mechanical behavior through a combination of special materials synthesis methods, nanoindentation coupled with finite-element modeling, detailed electron microscopic characterization, and in-situ transmission electron microscopy experiments. (2) Theory of Microstructures and Ensemble Controlled Deformation (PI Elizabeth A. Holm). The goal of this Task is to combine experiment, modeling, and simulation to construct, analyze, and utilize three-dimensional (3D) polycrystalline nanostructures. These full 3D models are critical for elucidating the complete structural geometry, topology, and arrangements that control experimentally-observed phenomena, such as abnormal grain growth, grain rotation, and internal dissipation measured in nanocrystalline metal. (3) Mechanics and Dynamics of Nanostructured and Nanoscale Materials (PI John P. Sullivan). The objective of this Task is to develop atomic-scale understanding of dynamic processes including internal dissipation in nanoscale and nanostructured metals, and phonon transport and boundary scattering in nanoscale structures via internal friction measurements.

More Details

Influence of point defects on grain boundary motion

Foiles, Stephen M.

This work addresses the influence of point defects, in particular vacancies, on the motion of grain boundaries. If there is a non-equilibrium concentration of point defects in the vicinity of an interface, such as due to displacement cascades in a radiation environment, motion of the interface to sweep up the defects will lower the energy and provide a driving force for interface motion. Molecular dynamics simulations are employed to examine the process for the case of excess vacancy concentrations in the vicinity of two grain boundaries. It is observed that the efficacy of the presence of the point defects in inducing boundary motion depends on the balance of the mobility of the defects with the mobility of the interfaces. In addition, the extent to which grain boundaries are ideal sinks for vacancies is evaluated by considering the energy of boundaries before and after vacancy absorption.

More Details

Molecular dynamics simulations of displacement cascades in GaAs

Foiles, Stephen M.

The quantification of the production of primary defects via displacement cascades is an important ingredient in the prediction of the influence of radiation on the performance of electronic components in radiation environments. Molecular dynamics simulations of displacement cascades are performed for GaAs The interatomic interactions are described using a recently proposed Bond Order Potential, and a simple model of electronic stopping is incorporated. The production of point defects is quantified as a function of recoil energy and recoil species. Correlations in the point defects are examined. There are a large number of anti-site defects nearest-neighbor pairs as well as di-vacancies and larger order vacancy clusters. Radiation damage and ion implantation in materials have been studied via molecular dynamics for many years. A significant challenge in these simulations is the detailed identification and quantification of the primary defect production. For the present case of a compound semiconductor, GaAs, there are a larger number of possible point defects compared to elemental materials; two types of vacancies, two types of interstitials and antisite defects. This is further complicated by the fact that, in addition to the formation of point defects, amorphous zones may also be created. The goal of the current work is to quantify the production of primary defects in GaAs due to radiation exposures. This information will be used as part of an effort to predict the influence of radiation environments on the performance of electronic components and circuits. The data provide the initial state for continuum-level analysis of the temporal evolution of defect populations. For this initial state, it is important to know both the number of the various point defects that may be produced as well as the initial spatial correlations between the primary defects. The molecular dynamics simulations employ a recently developed Bond Order Potential (BOP) for GaAs. The analysis of the resulting atomic configurations follows a generalization of methods presented previously for elemental Si. The number of point defects of various types, exclusive of the amorphous zones, is predicted as a function of recoil energy. It is also shown that certain primary point defects are initially formed in binary or larger clusters.

More Details

The effect of electron-ion coupling on radiation damage simulations of a pyrochlore waste form

Crozier, Paul C.; Ismail, Ahmed I.; Foiles, Stephen M.

We have performed molecular dynamics simulations of cascade damage in the gadolinium pyrochlore Gd{sub 2}Zr{sub 2}O{sub 7}, comparing results obtained from traditional methodologies that ignore the effect of electron-ion interactions with a 'two-temperature model' in which the electronic subsystem is modeled using a diffusion equation to determine the electronic temperature. We find that the electron-ion interaction friction coefficient {gamma}{sub p} is a significant parameter in determining the behavior of the system following the formation of the primary knock-on atom (here, a U{sup 3+} ion). The mean final U{sup 3+} displacement and the number of defect atoms formed is shown to decrease uniformly with increasing {gamma}{sub p}; however, other properties, such as the final equilibrium temperature and the oxygen-oxygen radial distribution function show a more complicated dependence on {gamma}{sub p}.

More Details

Science at the interface : grain boundaries in nanocrystalline metals

Foiles, Stephen M.; Medlin, Douglas L.; Holm, Elizabeth A.; Brewer, Luke N.; Hattar, Khalid M.; Knapp, J.A.; Rodriguez, Marko A.

Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

More Details

Grain boundary interface roughening transition and its effect on grain boundary mobility for non-faceting boundaries

Scripta Materialia

Olmsted, David L.; Foiles, Stephen M.; Holm, Elizabeth A.

Like other interfaces, equilibrium grain boundaries are smooth at low temperature and rough at high temperature; however, little attention has been paid to roughening except for faceting boundaries. Using molecular dynamics simulations of face-centered cubic Ni, we studied two closely related grain boundaries with different boundary planes. In spite of their similarity, their boundary roughening temperatures differ by several hundred degrees, and boundary mobility is much larger above the roughening temperature. This has important implications for microstructural development during metallurgical processes.

More Details

Fundamental enabling issues in nanotechnology :

Foiles, Stephen M.; Hearne, Sean J.; Morales, Alfredo M.; Webb, Edmund B.; Zimmerman, Jonathan A.

To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also supports the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g. continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in nanostructures and, eventually, integrated nanocomponents.

More Details

Detailed characterization of defect production in molecular dynamics simulations of cascades in Si

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Foiles, Stephen M.

Numerous molecular dynamics simulation studies of radiation cascades in Si have elucidated many of the general features of the initial defect production. However, the resulting defect structures have been analyzed with techniques that are not sensitive to changes in the local bonding topology. Here the results of analyzing the ring content in Si cascades, in addition to more traditional defect characterization such as Wigner-Seitz cell analysis, will be presented for recoil energies ranging from 25 eV up to 25 keV. The ring content of local amorphous regions in the cascades will be compared to the ring content in simulations of bulk amorphous Si. The number of atoms in the amorphous regions and the number of point defects as a function of recoil energy are determined. © 2006 Elsevier B.V. All rights reserved.

More Details

Computation of grain boundary stiffness and mobility from boundary fluctuations

Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005

Foiles, Stephen M.; Hoyt, Jeffrey J.

Grain boundary stiffness and mobility determine the kinetics of curvature driven grain growth. Here the stiffness and mobility are determined using a computational approach based on the analysis of fluctuations in the grain boundary position during molecular dynamics simulations. This work represents the first determination of grain boundary stiffness. The results indicate that the boundary stiffness for a given boundary plane has a strong dependence on the direction of the boundary distortion. The mobility deduced is in accord with previous computer simulation studies.

More Details

Novel in situ mechanical testers to enable integrated metal surface micro-machines

Hearne, Sean J.; De Boer, Maarten P.; Foiles, Stephen M.; Kotula, Paul G.; Dyck, Christopher D.; Follstaedt, D.M.; Buchheit, Thomas E.

The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science-based infrastructure to enhance the production of integrated metal--semiconductor systems and will directly impact RF MEMS and LIGA technologies at Sandia.

More Details

Experimental and computational study of the liquid-solid transition in tin

Foiles, Stephen M.

An experimental technique was developed to perform isentropic compression of heated liquid tin samples at the Z Accelerator, and multiple such experiments were performed to investigate solidification under rapid compression. Preliminary analyses, using two different methods, of data from experiments with high uncertainty in sample thickness suggest that solidification can begin to occur during isentropic compression on time scales of less than 100 ns. Repeatability of this result has not been confirmed due to technical issues on the subsequent experiments performed. First-principles molecular-dynamics calculations based on density-functional theory showed good agreement with experimentally-determined structure factors for liquid tin, and were used to investigate the equation of state and develop a novel interatomic pseudo-potential for liquid tin and its high-pressure solid phase. Empirical-potential molecular-dynamics calculations, using the new potential, gave results for the solid-liquid interface velocity, which was found to vary linearly with difference in free energy between the solid and liquid phases, as well as the liquidus, the maximum over-pressurization, and the solid-liquid interfacial energy. These data will prove useful in future modeling of solidification kinetics for liquid tin.

More Details

Stress creation during Ni-Mn alloy electrodeposition

Proposed for publication in the Journal of Applied Physics.

Hearne, Sean J.; Brewer, Luke N.; Foiles, Stephen M.; Floro, Jerrold A.; Frazer, Colleen S.; Tissot, Ralph G.; Rodriguez, Marko A.; Hlava, Paul F.

The stress evolution during electrodeposition of NiMn from a sulfamate-based bath was investigated as a function of Mn concentration and current density. The NiMn stress evolution with film thickness exhibited an initial high transitional stress region followed by a region of steady-state stress with a magnitude that depended on deposition rate, similar to the previously reported stress evolution in electrodeposited Ni [S. J. Hearne and J. A. Floro, J. Appl. Phys. 97, 014901-1 (2005)]. The incorporation of increasing amounts of Mn resulted in a linear increase in the steady-state stress at constant current density. However, no significant changes in the texture or grain size were observed, which indicates that an atomistic process is driving the changes in steady-state stress. Additionally, microstrain measured by ex situ x-ray diffraction increased with increasing Mn content, which was likely the result of localized lattice distortions associated with substitutional incorporation of Mn and/or increased twin density.

More Details

Computing the mobility of grain boundaries

Proposed for publication in Nature Materials.

Janssens, Koenraad G.; Holm, Elizabeth A.; Foiles, Stephen M.; Plimpton, Steven J.

As current experimental and simulation methods cannot determine the mobility of flat boundaries across the large misorientation phase space, we have developed a computational method for imposing an artificial driving force on boundaries. In a molecular dynamics simulation, this allows us to go beyond the inherent timescale restrictions of the technique and induce non-negligible motion in flat boundaries of arbitrary misorientation. For different series of symmetric boundaries, we find both expected and unexpected results. In general, mobility increases as the grain boundary plane deviates from (111), but high-coincidence and low-angle boundaries represent special cases. These results agree with and enrich experimental observations.

More Details

DFT calculations of the structural and thermodynamic properties of molten Sn: zero-pressure isobar

Foiles, Stephen M.; Foiles, Stephen M.

The dynamic compression of molten metals including Sn is of current interest. In particular, experiments on the compression of molten Sn by Davis and Hayes will be described at this conference. Supporting calculations of the equation of state and structure of molten Sn as a function of temperature and pressure are in progress. The calculations presented are ab initio molecular dynamics simulations based on electronic density functional theory within the local density approximation. The equation of state and liquid structure factors for zero pressure are compared with existing experimental results. The good agreement in this case provides validation of the calculations.

More Details

Computer Simulation of Bubble Growth in Metals Due to He

Foiles, Stephen M.; Hoyt, Jeffrey J.

Atomistic simulations of the growth of helium bubbles in metals are performed. The metal is represented by embedded atom method potentials for palladium. The helium bubbles are treated via an expanding repulsive spherical potential within the metal lattice. The simulations predict bubble pressures that decrease monotonically with increasing helium to metal ratios. The swelling of the material associated with the bubble growth is also computed. It is found that the rate of swelling increases with increasing helium to metal ratio consistent with experimental observations on the swelling of metal tritides. Finally, the detailed defect structure due to the bubble growth was investigated. Dislocation networks are observed to form that connect the bubbles. Unlike early model assumptions, prismatic loops between the bubbles are not retained. These predictions are compared to available experimental evidence.

More Details
180 Results
180 Results