Publications

45 Results
Skip to search filters

Sensitivity Analyses for Monte Carlo Sampling-Based Particle Simulations

Bond, Stephen D.; Franke, Brian C.; Lehoucq, Richard B.; McKinley, Scott M.

Computational design-based optimization is a well-used tool in science and engineering. Our report documents the successful use of a particle sensitivity analysis for design-based optimization within Monte Carlo sampling-based particle simulation—a currently unavailable capability. Such a capability enables the particle simulation communities to go beyond forward simulation and promises to reduce the burden on overworked analysts by getting more done with less computation.

More Details

Fluid-Kinetic Coupling: Advanced Discretizations for Simulations on Emerging Heterogeneous Architectures (LDRD FY20-0643)

Roberts, Nathan V.; Bond, Stephen D.; Miller, Sean A.; Cyr, Eric C.

Plasma physics simulations are vital for a host of Sandia mission concerns, for fundamental science, and for clean energy in the form of fusion power. Sandia's most mature plasma physics simulation capabilities come in the form of particle-in-cell (PIC) models and magnetohydrodynamics (MHD) models. MHD models for a plasma work well in denser plasma regimes when there is enough material that the plasma approximates a fluid. PIC models, on the other hand, work well in lower-density regimes, in which there is not too much to simulate; error in PIC scales as the square root of the number of particles, making high-accuracy simulations expensive. Real-world applications, however, almost always involve a transition region between the high-density regimes where MHD is appropriate, and the low-density regimes for PIC. In such a transition region, a direct discretization of Vlasov is appropriate. Such discretizations come with their own computational costs, however; the phase-space mesh for Vlasov can involve up to six dimensions (seven if time is included), and to apply appropriate homogeneous boundary conditions in velocity space requires meshing a substantial padding region to ensure that the distribution remains sufficiently close to zero at the velocity boundaries. Moreover, for collisional plasmas, the right-hand side of the Vlasov equation is a collision operator, which is non-local in velocity space, and which may dominate the cost of the Vlasov solver. The present LDRD project endeavors to develop modern, foundational tools for the development of continuum-kinetic Vlasov solvers, using the discontinuous Petrov-Galerkin (DPG) methodology, for discretization of Vlasov, and machine-learning (ML) models to enable efficient evaluation of collision operators. DPG affords several key advantages. First, it has a built-in, robust error indicator, allowing us to adapt the mesh in a very natural way, enabling a coarse velocity-space mesh near the homogeneous boundaries, and a fine mesh where the solution has fine features. Second, it is an inherently high-order, high-intensity method, requiring extra local computations to determine so-called optimal test functions, which makes it particularly suited to modern hardware in which floating-point throughput is increasing at a faster rate than memory bandwidth. Finally, DPG is a residual-minimizing method, which enables high-accuracy computation: in typical cases, the method delivers something very close to the $L^2$ projection of the exact solution. Meanwhile, the ML-based collision model we adopt affords a cost structure that scales as the square root of a standard direct evaluation. Moreover, we design our model to conserve mass, momentum, and energy by construction, and our approach to training is highly flexible, in that it can incorporate not only synthetic data from direct-simulation Monte Carlo (DSMC) codes, but also experimental data. We have developed two DPG formulations for Vlasov-Poisson: a time-marching, backward-Euler discretization and a space-time discretization. We have conducted a number of numerical experiments to verify the approach in a 1D1V setting. In this report, we detail these formulations and experiments. We also summarize some new theoretical results developed as part of this project (published as papers previously): some new analysis of DPG for the convection-reaction problem (of which the Vlasov equation is an instance), a new exponential integrator for DPG, and some numerical exploration of various DPG-based time-marching approaches to the heat equation. As part of this work, we have contributed extensively to the Camellia open-source library; we also describe the new capabilities and their usage. We have also developed a well-documented methodology for single-species collision operators, which we applied to argon and demonstrated with numerical experiments. We summarize those results here, as well as describing at a high level a design extending the methodology to multi-species operators. We have released a new open-source library, MLC, under a BSD license; we include a summary of its capabilities as well.

More Details

Neural-network based collision operators for the Boltzmann equation

Journal of Computational Physics

Roberts, Nathan V.; Bond, Stephen D.; Cyr, Eric C.; Miller, Sean T.

Kinetic gas dynamics in rarefied and moderate-density regimes have complex behavior associated with collisional processes. These processes are generally defined by convolution integrals over a high-dimensional space (as in the Boltzmann operator), or require evaluating complex auxiliary variables (as in Rosenbluth potentials in Fokker-Planck operators) that are challenging to implement and computationally expensive to evaluate. In this work, we develop a data-driven neural network model that augments a simple and inexpensive BGK collision operator with a machine-learned correction term, which improves the fidelity of the simple operator with a small overhead to overall runtime. The composite collision operator has a tunable fidelity and, in this work, is trained using and tested against a direct-simulation Monte-Carlo (DSMC) collision operator.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

Regular sensitivity computation avoiding chaotic effects in particle-in-cell plasma methods

Journal of Computational Physics

Chung, Seung W.; Bond, Stephen D.; Cyr, Eric C.; Freund, Jonathan B.

Particle-in-cell (PIC) simulation methods are attractive for representing species distribution functions in plasmas. However, as a model, they introduce uncertain parameters, and for quantifying their prediction uncertainty it is useful to be able to assess the sensitivity of a quantity-of-interest (QoI) to these parameters. Such sensitivity information is likewise useful for optimization. However, computing sensitivity for PIC methods is challenging due to the chaotic particle dynamics, and sensitivity techniques remain underdeveloped compared to those for Eulerian discretizations. This challenge is examined from a dual particle–continuum perspective that motivates a new sensitivity discretization. Two routes to sensitivity computation are presented and compared: a direct fully-Lagrangian particle-exact approach provides sensitivities of each particle trajectory, and a new particle-pdf discretization, which is formulated from a continuum perspective but discretized by particles to take the advantages of the same type of Lagrangian particle description leveraged by PIC methods. Since the sensitivity particles in this approach are only indirectly linked to the plasma-PIC particles, they can be positioned and weighted independently for efficiency and accuracy. The corresponding numerical algorithms are presented in mathematical detail. The advantage of the particle-pdf approach in avoiding the spurious chaotic sensitivity of the particle-exact approach is demonstrated for Debye shielding and sheath configurations. In essence, the continuum perspective makes implicit the distinctness of the particles, which circumvents the Lyapunov instability of the N-body PIC system. The cost of the particle-pdf approach is comparable to the baseline PIC simulation.

More Details

FLEXO: Development of a Discontinuous Galerkin Multimaterial Magneto-Hydrodynamics Code for MagLIF Simulation

Beckwith, Kristian B.; Beckwith, Kristian B.; Bond, Stephen D.; Bond, Stephen D.; Granzow, Brian N.; Granzow, Brian N.; Hamlin, Nathaniel D.; Hamlin, Nathaniel D.; Martin, Matthew; Martin, Matthew; Powell, Michael P.; Powell, Michael P.; Ruggirello, Kevin P.; Ruggirello, Kevin P.; Stagg, Alan K.; Stagg, Alan K.; Voth, Thomas E.; Voth, Thomas E.

Abstract not provided.

Random walks on jammed networks: Spectral properties

Physical Review E

Lechman, Jeremy B.; Bond, Stephen D.; Bolintineanu, Dan S.; Grest, Gary S.; Yarrington, Cole Y.; Silbert, Leonardo E.

Using random walk analyses we explore diffusive transport on networks obtained from contacts between isotropically compressed, monodisperse, frictionless sphere packings generated over a range of pressures in the vicinity of the jamming transition p→0. For conductive particles in an insulating medium, conduction is determined by the particle contact network with nodes representing particle centers and edges contacts between particles. The transition rate is not homogeneous, but is distributed inhomogeneously due to the randomness of packing and concomitant disorder of the contact network, e.g., the distribution of the coordination number. A narrow escape time scale is used to write a Markov process for random walks on the particle contact network. This stochastic process is analyzed in terms of spectral density of the random, sparse, Euclidean and real, symmetric, positive, semidefinite transition rate matrix. Results show network structures derived from jammed particles have properties similar to ordered, euclidean lattices but also some unique properties that distinguish them from other structures that are in some sense more homogeneous. In particular, the distribution of eigenvalues of the transition rate matrix follow a power law with spectral dimension 3. However, quantitative details of the statistics of the eigenvectors show subtle differences with homogeneous lattices and allow us to distinguish between topological and geometric sources of disorder in the network.

More Details

Development of the Flexo XMHD Code

Beckwith, Kristian B.; Beckwith, Kristian B.; Beckwith, Kristian B.; Beckwith, Kristian B.; Bond, Stephen D.; Bond, Stephen D.; Bond, Stephen D.; Bond, Stephen D.; Granzow, Brian N.; Granzow, Brian N.; Granzow, Brian N.; Granzow, Brian N.; Jennings, Christopher A.; Jennings, Christopher A.; Jennings, Christopher A.; Jennings, Christopher A.; Martin, Matthew; Martin, Matthew; Martin, Matthew; Martin, Matthew; Porwitzky, Andrew J.; Porwitzky, Andrew J.; Porwitzky, Andrew J.; Porwitzky, Andrew J.; Stagg, Alan K.; Stagg, Alan K.; Stagg, Alan K.; Stagg, Alan K.; Voth, Thomas E.; Voth, Thomas E.; Voth, Thomas E.; Voth, Thomas E.

Abstract not provided.

Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets

IEEE Transactions on Magnetics

Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.; van Bloemen Waanders, Bart G.; Bond, Stephen D.; Nemer, Martin N.

Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. In this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results show that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μ m when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Last, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.

More Details

Nonlocal and mixed-locality multiscale finite element methods

Multiscale Modeling and Simulation

Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. In this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. We conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.

More Details

Visco-TTI-elastic FWI using discontinuous galerkin

SEG Technical Program Expanded Abstracts

Ober, Curtis C.; Smith, Thomas M.; Overfelt, James R.; Collis, Samuel S.; von Winckel, Gregory J.; van Bloemen Waanders, Bart G.; Downey, Nathan J.; Mitchell, Scott A.; Bond, Stephen D.; Aldridge, David F.; Krebs, Jerome R.

The need to better represent the material properties within the earth's interior has driven the development of higherfidelity physics, e.g., visco-tilted-transversely-isotropic (visco- TTI) elastic media and material interfaces, such as the ocean bottom and salt boundaries. This is especially true for full waveform inversion (FWI), where one would like to reproduce the real-world effects and invert on unprocessed raw data. Here we present a numerical formulation using a Discontinuous Galerkin (DG) finite-element (FE) method, which incorporates the desired high-fidelity physics and material interfaces. To offset the additional costs of this material representation, we include a variety of techniques (e.g., non-conformal meshing, and local polynomial refinement), which reduce the overall costs with little effect on the solution accuracy.

More Details

Peridynamic Multiscale Finite Element Methods

Costa, Timothy C.; Bond, Stephen D.; Littlewood, David J.; Moore, Stan G.

The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.

More Details

Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

Littlewood, David J.; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob O.; Gunzburger, Max G.

Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for dramatically improved consistency at domain boundaries, and an enhancement to the meshfree discretization applied to peridynamic models that removes irregularities at the limit of the nonlocal length scale and dramatically improves conver- gence behavior. Finally, a novel approach for modeling ductile failure has been developed, moti- vated by the desire to apply coupled local-nonlocal models to a wide variety of materials, including ductile metals, which have received minimal attention in the peridynamic literature. Software im- plementation of the partial-stress coupling strategy, the position-aware peridynamic constitutive models, and the strategies for improving the convergence behavior of peridynamic models was completed within the Peridigm and Albany codes, developed at Sandia National Laboratories and made publicly available under the open-source 3-clause BSD license.

More Details

Multilevel summation methods for efficient evaluation of long-range pairwise interactions in atomistic and coarse-grained molecular simulation

Bond, Stephen D.

The availability of efficient algorithms for long-range pairwise interactions is central to the success of numerous applications, ranging in scale from atomic-level modeling of materials to astrophysics. This report focuses on the implementation and analysis of the multilevel summation method for approximating long-range pairwise interactions. The computational cost of the multilevel summation method is proportional to the number of particles, N, which is an improvement over FFTbased methods whos cost is asymptotically proportional to N logN. In addition to approximating electrostatic forces, the multilevel summation method can be use to efficiently approximate convolutions with long-range kernels. As an application, we apply the multilevel summation method to a discretized integral equation formulation of the regularized generalized Poisson equation. Numerical results are presented using an implementation of the multilevel summation method in the LAMMPS software package. Preliminary results show that the computational cost of the method scales as expected, but there is still a need for further optimization.

More Details

Computational Mechanics for Heterogeneous Materials

Baczewski, Andrew D.; Yarrington, Cole Y.; Bond, Stephen D.; Erikson, William W.; Lehoucq, Richard B.; Mondy, L.A.; Noble, David R.; Pierce, Flint P.; Roberts, Christine C.; Van Swol, Frank

The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem. These fluctuations due to random microstructures also provide a means of characterizing the aleatory uncertainty in material properties at the mesoscale.

More Details

Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel

Journal of Chemical Physics

Baczewski, Andrew D.; Bond, Stephen D.

Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.

More Details

Goal-oriented adaptivity and multilevel preconditioning for the poisson-boltzmann equation

Journal of Scientific Computing

Aksoylu, Burak; Bond, Stephen D.; Cyr, Eric C.; Holst, Michael

In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm. To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners. © 2011 Springer Science+Business Media (outside the USA).

More Details
45 Results
45 Results