Inferring Gas Flow and Fracture Network Damage After a Subsurface Detonation Using Explosive and Geogenic Noble Gases
Abstract not provided.
Abstract not provided.
Abstract not provided.
The main goal of this project was to create a state-of-the-art predictive capability that screens and identifies wellbores that are at the highest risk of catastrophic failure. This capability is critical to a host of subsurface applications, including gas storage, hydrocarbon extraction and storage, geothermal energy development, and waste disposal, which depend on seal integrity to meet U.S. energy demands in a safe and secure manner. In addition to the screening tool, this project also developed several other supporting capabilities to help understand fundamental processes involved in wellbore failure. This included novel experimental methods to characterize permeability and porosity evolution during compressive failure of cement, as well as methods and capabilities for understanding two-phase flow in damaged wellbore systems, and novel fracture-resistant cements made from recycled fibers.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Rock Mechanics and Mining Sciences
The Zenifim Formation is being considered as a potential disposal formation for a deep borehole nuclear repository concept in Israel. Site selection and repository construction are intended to ensure that waste is separated from circulating groundwater, but long-term deformation of the wellbore could potentially create fluid flow pathways. To understand how time-dependent rock strength could affect wellbore stability, we conducted creep tests under low to moderate confining pressures on retrieved core from the Zenifim formation. During creep, samples strain slowly as gradual damage accumulation progressively weakens the samples. Failure eventually occurred through the near-instantaneous formation of a shear fracture. Experimental results were used to calibrate a continuum damage poro-elastic model for sandstones. The calibrated damage-poro-elastic model successfully simulates different types of loading experiments including quasi-static and creep. The state of strain in experiments is close to yield during loading as the yield cap continuously evolves with damage accumulation. For creep tests, most damage occurs during triaxial loading. Minor damage accumulation occurs under constant load until the final stage of creep, where damage accelerates and promotes unstable fracturing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Geofluids
The stress history of rocks in the subsurface affects their mechanical and petrophysical properties. Rocks can often experience repeated cycles of loading and unloading due to fluid pressure fluctuations, which will lead to different mechanical behavior from static conditions. This is of importance for several geophysical and industrial applications, for example, wastewater injection and reservoir storage wells, which generate repeated stress perturbations. Laboratory experiments were conducted with Castlegate sandstone to observe the effects of different cyclic pressure loading conditions on a common reservoir analogue. Each sample was hydrostatically loaded in a triaxial cell to a low effective confining pressure, and either pore pressure or confining pressure was cycled at different rates over the course of a few weeks. Fluid permeability was measured during initial loading and periodically between stress cycles. Samples that undergo cyclic loading experience significantly more inelastic (nonrecoverable) strain compared to samples tested without cyclic hydrostatic loading. Permeability decreases rapidly for all tests during the first few days of testing, but the decrease and variability of permeability after this depend upon the loading conditions of each test. Cycling conditions do affect the mechanical behavior; the elastic moduli decrease with the increasing loading rate and stress cycling. The degree of volumetric strain induced by stress cycles is the major control on permeability change in the sandstones, with less compaction leading to more variation from measurement to measurement. The data indicate that cyclic loading degrades permeability and porosity more than static conditions over a similar period, but the petrophysical properties are dictated more by the hydrostatic loading rate rather than the total length of time stress cycling is imposed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Geofluids
Geogenic noble gases are contained in crustal rocks at inter- and intracrystalline sites. In this study, bedded rock salt from southern New Mexico was deformed in a variety of triaxial compression states while measuring the release of naturally contained helium and argon utilizing mass spectrometry. Noble gas release is empirically correlated to volumetric strain and acoustic emissions. At low confining pressures, rock salt deforms primarily by microfracturing, rupturing crystal grains, and releasing helium and argon with a large amount of acoustic emissions, both measured real-time. At higher confining pressure, microfracturing is reduced and the rock salt is presumed to deform more by intracrystalline flow, releasing less amounts of noble gases with fewer acoustic emissions. Our work implies that geogenic gas release during deformation may provide an additional signal which contains information on the type and amount of deformation occurring in a variety of earth systems.
53rd U.S. Rock Mechanics/Geomechanics Symposium
In wellbores, cement plays an important role in wellbore integrity. As wells age and are stressed during their life cycle, the cement sheath may deform, altering its permeability and, perhaps compromising its integrity. In this study, we use flow measurements (calculated permeability) to provide real-time insight into damage incurred during triaxial deformation of neat cement. Cracks may be induced during deformation and their linkage may be sensed in the flow measurements. Conversely, cracks and pores may be closed during deformation, arresting fluid flow. We subjected room temperature specimens of neat Portland cement to confining pressures (0.7, 2.1, 13.8 MPa) and measured heliu m flow continuously during triaxial deformation. Axial displacement across a specimen was periodically halted to perhaps assure steady flow rate throughout the sample. We observed the apparent permeability to decrease from 0.8 to 0.7 to 0.2 μD with the imposed confining pressure increase. Each specimen, when subjected to differential stress, exhibited a slight decrease in apparent permeability, implying disconnects of flow paths. For the two lower confining pressures, apparent permeability began to increase just prior to macroscopic failure, suggesting microcrack linkage. For the 2.1 MPa confining pressure test, apparent permeability increased by a factor of three at macrofracture, and for the 0.7 MPa confining pressure test, apparent permeability increased by a factor of thirty at macrofracture. At 13.8 MPa confining pressure, apparent permeability only decreases during triaxial loading, implying that poroelastic compaction restricts flow pathways and connectivity of appropriately oriented cracks for axial flow decreases during deformation. Failure by macrofracture did not occur in this sample. Optical and scanning electron microscopy of deformed specimens indicate that pores and microcracks interact in complex manners, similar microcrack densities are observed in both 0.7 and 13.8 MPa test specimens, and pores represent both microcrack origination and localization sites. Larger pores (entrapped air voids) are sheared, flattened, and sites of crack opening. Micron-scale capillary porosity, determined using SEM image processing, is similar for all specimens. The results from these few experiments indicate that microfracturing of cement during triaxial deformation results in permeabilit y increases at low confining pressures. At the greater pressure, although microfracturing is observed, compaction and lack of microfracture interconnectivity have a greater effect on flow pathways, resulting in a permeability decrease during deformation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Engineering Geology
Granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hosting the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.
Rock Mechanics and Rock Engineering
The Kaiser effect is a stress memory phenomenon which has most often been demonstrated in rock using acoustic emissions. During cyclic loading–unloading–reloading, the acoustic emissions are near zero until the load exceeds the level of the previous load cycle. Researchers explore the Kaiser effect in rock using real-time noble gas release. Laboratory studies using real-time mass spectrometry measurements during deformation have quantified, to a degree, the types of gases released, degree, the types of gases released (Bauer et al. 2016a, b), their release rates and amounts during deformation, estimates of permeability created from pore structure modifications during deformation and the impact of mineral plasticity upon gas release. Its observed that noble gases contained in brittle crystalline rock are readily released during deformation.
Abstract not provided.
52nd U.S. Rock Mechanics/Geomechanics Symposium
Helium and argon are represented by known amounts in air. Helium is 5.2 ppm by volume in the atmosphere and primarily the result of the natural radioactive decay of heavy radioactive elements. Argon is the third most abundant gas in the Earth's atmosphere, 9340 ppm; radiogenic argon-40, is derived from the decay of potassium-40 in the Earth's crust. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. Geogenic noble gases are contained in most crustal rock at inter and intra granular sites, their release during natural and man-made stress and strain changes represents a signal of deformation. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes in gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. An experimental system we developed combines triaxial rock deformation and mass spectrometry to measure noble gas flow real-time during deformation. Geogenic noble gases are released during triaxial deformation and that release is related to volume strain and acoustic emissions. The noble gas release then represents a signal of deformation during its stages of development. Gases released depend on initial gas content, pore structure and its evolution, and amount of deformation imposed. Noble gas release is stress/strain history dependent and pressure and strain rate dependent. Sensing of gases released related to both earthquakes and volcanic activity has resulted in anomalies detected for these natural processes. We propose using this deformation signal as a tool to detect subterranean deformation (fracture).
Abstract not provided.
International Journal of Rock Mechanics and Mining Sciences
We generate a wide range of models of proppant-packed fractures using discrete element simulations, and measure fracture conductivity using finite element flow simulations. This allows for a controlled computational study of proppant structure and its relationship to fracture conductivity and stress in the proppant pack. For homogeneous multi-layered packings, we observe the expected increase in fracture conductivity with increasing fracture aperture, while the stress on the proppant pack remains nearly constant. This is consistent with the expected behavior in conventional proppant-packed fractures, but the present work offers a novel quantitative analysis with an explicit geometric representation of the proppant particles. In single-layered packings (i.e. proppant monolayers), there is a drastic increase in fracture conductivity as the proppant volume fraction decreases and open flow channels form. However, this also corresponds to a sharp increase in the mechanical stress on the proppant pack, as measured by the maximum normal stress relative to the side crushing strength of typical proppant particles. We also generate a variety of computational geometries that resemble highly heterogeneous proppant packings hypothesized to form during channel fracturing. In some cases, these heterogeneous packings show drastic improvements in conductivity with only moderate increase in the stress on the proppant particles, suggesting that in certain applications these structures are indeed optimal. We also compare our computer-generated structures to micro computed tomography imaging of a manually fractured laboratory-scale shale specimen, and find reasonable agreement in the geometric characteristics.
Abstract not provided.
Journal of Geophysical Research: Solid Earth
We use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We find that the helium signal is sensitive to fracture development and evolution as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. Our model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.
The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physical models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.
Abstract not provided.
Abstract not provided.
Abstract not provided.