Publications

23 Results
Skip to search filters

High Strain Rate Tensile Response of A572 and 4140 Steel

Procedia Engineering

Sanborn, Brett S.; Song, Bo S.; Thompson, Andrew D.; Reece, Blake D.; Attaway, Stephen W.

Steel grades such as A572 and AISI 4140 are often used for applications where high rate or impact loading may occur. A572 is a hot-rolled carbon steel that is used where a high strength to weight ratio is desired. A grade such as AISI 4140 offers decent corrosion resistance due to higher chromium and molybdenum content and is commonly used in firearm parts, pressurized gas tubes, and structural tubing for roll cages. In these scenarios, the material may undergo high rate loading. Thus, material properties including failure and fracture response at relevant loading rates must be understood so that numerical simulations of impact events accurately capture the deformation and failure/fracture behavior of the involved materials. In this study, the high strain rate tensile response of A572 and 4140 steel are investigated. An increase in yield strength of approximately 28% was observed for 4140 steel when comparing 0.001 s-1 strain rate to 3000 s-1 experiments. A572 showed an increase in yield strength of approximately 52% when the strain rate increased from quasi-static to 2750 s-1. Effects on true stress and strain at failure for the two materials are also discussed.

More Details

Prediction of spatial distributions of equilibrium product species from high explosive blasts in air

50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014

Brundage, Aaron B.; Attaway, Stephen W.; Hobbs, Michael L.; Kaneshige, Michael J.; Boye, Lydia A.

Blast waves from an explosion in air can cause significant structural damage. As an example, cylindrically-shaped charges have been used for over a century as dynamite sticks for mining, excavation, and demolition. Near the charge, the effects of geometry, standoff from the ground, the proximity to other objects, confinement (tamping), and location of the detonator can significantly affect blast wave characteristics. Furthermore, nonuniformity in the surface characteristics and the density of the charge can affect fireball and shockwave structure. Currently, the best method for predicting the shock structure near a charge and the dynamic loading on nearby structures is to use a multidimensional, multimaterial shock physics code. However, no single numerical technique currently exists for predicting secondary combustion, especially when particulates from the charge are propelled through the fireball and ahead of the leading shock lens. Furthermore, the air within the thin shocked layer can dissociate and ionize. Hence, an appropriate equation of state for air is needed in these extreme environments. As a step towards predicting this complex phenomenon, a technique was developed to provide the equilibrium species composition at every computational cell in an air blast simulation as an initial condition for hand-off to other analysis codes for combustion fluid dynamics or radiation transport. Here, a bare cylindrical charge of TNT detonated in air is simulated using CTH, an Eulerian, finite volume, shock propagation code developed and maintained at Sandia National Laboratories. The shock front propagation is computed at early times, including the detonation wave structure in the explosive and the subsequent air shock up to 100 microseconds, where ambient air entrainment is not significant. At each computational cell, which could have TNT detonation products, air, or both TNT and air, the equilibrium species concentration at the density-energy state is computed using the JCZS2i database in the thermochemical code TIGER. This extensive database of 1267 gas (including 189 ionized species) and 490 condensed species can predict thermodynamic states up to 20,000 K. The results of these calculations provide the detailed three-dimensional structure of a thin shock front, and spatial species concentrations including free radicals and ions. Furthermore, air shock predictions are compared with experimental pressure gage data from a right circular cylinder of pressed TNT, detonated at one end. These complimentary predictions show excellent agreement with the data for the primary wave structure.

More Details

Post-processing V&V Level II ASC Milestone (2843) results

Moreland, Kenneth D.; Wilke, Jason W.; Attaway, Stephen W.; Karelitz, David B.

The 9/30/2008 ASC Level 2 Post-Processing V&V Milestone (Milestone 2843) contains functionality required by the user community for certain verification and validation tasks. These capabilities include fragment detection from CTH simulation data, fragment characterization and analysis, and fragment sorting and display operations. The capabilities were tested extensively both on sample and actual simulations. In addition, a number of stretch criteria were met including a comparison between simulated and test data, and the ability to output each fragment as an individual geometric file.

More Details

Breach and safety analysis of spills over water from large liquefied natural gas carriers

Luketa, Anay L.; Hightower, Marion M.; Attaway, Stephen W.

In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

More Details

Model validation of a structure subjected to internal blast loading

Conference Proceedings of the Society for Experimental Mechanics Series

Brundage, Aaron L.; Metzinger, Kurt E.; VanGoethem, Doug; Attaway, Stephen W.

In order to predict blast damage on structures, it is current industry practice to decouple shock calculations from computational structural dynamics calculations. Pressure-time histories from experimental tests were used to assess computational models developed using a shock physics code (CTH) and a structural dynamics code (PRONTO3D). CTH was shown to be able to reproduce three independent characteristics of a blast wave: arrival time, peak overpressure, and decay time. Excellent agreement was achieved for early times, where the rigid wall assumptions used in the model analysis were valid. A one-way coupling was performed for this blast-structure interaction problem by taking the pressure-time history from the shock physics simulation and applying it to the structure at the corresponding locations in the PRONTO3D simulation to capture the structural deformation. In general, the one-way coupling was shown to be a cost-effective means of predicting the structural response when the time duration of the load was less than the response time of the structure. Therefore, the computational models were successfully evaluated for the internal blast problems studied herein.

More Details

Naval submarine base Kings Bay and Bangor soil evaluations

Holcomb, David J.; Attaway, Stephen W.; Wesenberg, Donald L.

This report provides soil evaluation and characterization testing for the submarine bases at Kings Bay, Georgia, and Bangor, Washington, using triaxial testing at high confining pressures with different moisture contents. In general, the samples from the Bangor and Kings Bay sites appeared to be stronger than a previously used reference soil. Assuming the samples of the material were representative of the material found at the sites, they should be adequate for use in the planned construction. Since soils can vary greatly over even a small site, a soil specification for the construction contractor would be needed to insure that soil variations found at the site would meet or exceed the requirements. A suggested specification for the Bangor and Kings Bay soils was presented based on information gathered from references plus data obtained from this study, which could be used as a basis for design by the construction contractor.

More Details

Modeling air blast on thin-shell structures with Zapotec

Bessette, Gregory B.; Bessette, Gregory B.; Vaughan, Courtenay T.; Bell, Raymond L.; Attaway, Stephen W.

A new capability for modeling thin-shell structures within the coupled Euler-Lagrange code, Zapotec, is under development. The new algorithm creates an artificial material interface for the Eulerian portion of the problem by expanding a Lagrangian shell element such that it has an effective thickness that spans one or more Eulerian cells. The algorithm implementation is discussed along with several examples involving blast loading on plates.

More Details
23 Results
23 Results