Publications

Results 1–25 of 87
Skip to search filters

Medium-Scale Methanol Pool Fire Model Validation

Journal of Heat Transfer

Hubbard, Joshua A.; Kirsch, Jared K.; Hewson, John C.; Hansen, Michael A.; Domino, Stefan P.

In this work, medium scale (30 cm diameter) methanol pool fires were simulated using the latest fire modeling suite implemented in Sierra/Fuego, a low Mach number multiphysics reacting flow code. The sensitivity of model outputs to various model parameters was studied with the objective of providing model validation. This work also assesses model performance relative to other recently published large eddy simulations (LES) of the same validation case. Two pool surface boundary conditions were simulated. The first was a prescribed fuel mass flux and the second used an algorithm to predict mass flux based on a mass and energy balance at the fuel surface. Gray gas radiation model parameters (absorption coefficients and gas radiation sources) were varied to assess radiant heat losses to the surroundings and pool surface. The radiation model was calibrated by comparing the simulated radiant fraction of the plume to experimental data. The effects of mesh resolution were also quantified starting with a grid resolution representative of engineering type fire calculations and then uniformly refining that mesh in the plume region. Simulation data were compared to experimental data collected at the University of Waterloo and the National Institute of Standards and Technology (NIST). Validation data included plume temperature, radial and axial velocities, velocity temperature turbulent correlations, velocity velocity turbulent correlations, radiant and convective heat fluxes to the pool surface, and plume radiant fraction. Additional analyses were performed in the pool boundary layer to assess simulated flame anchoring and the effect on convective heat fluxes. This work assesses the capability of the latest Fuego physics and chemistry model suite and provides additional insight into pool fire modeling for nonluminous, non-sooting flames.

More Details

Verification of Data-Driven Models of Physical Phenomena using Interpretable Approximation

Ray, Jaideep R.; Barone, Matthew F.; Domino, Stefan P.; Banerjee, Tania B.; Ranka, Sanjay R.

Machine-learned models, specifically neural networks, are increasingly used as “closures” or “constitutive models” in engineering simulators to represent fine-scale physical phenomena that are too computationally expensive to resolve explicitly. However, these neural net models of unresolved physical phenomena tend to fail unpredictably and are therefore not used in mission-critical simulations. In this report, we describe new methods to authenticate them, i.e., to determine the (physical) information content of their training datasets, qualify the scenarios where they may be used and to verify that the neural net, as trained, adhere to physics theory. We demonstrate these methods with neural net closure of turbulent phenomena used in Reynolds Averaged Navier-Stokes equations. We show the types of turbulent physics extant in our training datasets, and, using a test flow of an impinging jet, identify the exact locations where the neural network would be extrapolating i.e., where it would be used outside the feature-space where it was trained. Using Generalized Linear Mixed Models, we also generate explanations of the neural net (à la Local Interpretable Model agnostic Explanations) at prototypes placed in the training data and compare them with approximate analytical models from turbulence theory. Finally, we verify our findings by reproducing them using two different methods.

More Details

Viral Fate and Transport for COVID-19 - NVBL

Negrete, Oscar N.; Domino, Stefan P.; Ho, Clifford K.

The NVBL Viral Fate and Transport Team includes researchers from eleven DOE national laboratories and is utilizing unique experimental facilities combined with physics-based and data-driven modeling and simulation to study the transmission, transport, and fate of SARSCoV-2. The team was focused on understanding and ultimately predicting SARS-CoV-2 viability in varied environments with the goal of rapidly informing strategies that guide the nation’s resumption of normal activities. The primary goals of this project include prioritizing administrative and engineering controls that reduce the risk of SARS-CoV-2 transmission within an enclosed environment; identifying the chemical and physical properties that influence binding of SARS-CoV-2 to common surfaces; and understanding the contribution of environmental reservoirs and conditions on transmission and resurgence of SARS-CoV-2.

More Details

Predicting large-scale pool fire dynamics using an unsteady flamelet- And large-eddy simulation-based model suite

Physics of Fluids

Domino, Stefan P.; Hewson, John C.; Knaus, Robert C.; Hansen, Michael A.

A low-Mach, unstructured, large-eddy-simulation-based, unsteady flamelet approach with a generalized heat loss combustion methodology (including soot generation and consumption mechanisms) is deployed to support a large-scale, quiescent, 5-m JP-8 pool fire validation study. The quiescent pool fire validation study deploys solution sensitivity procedures, i.e., the effect of mesh and time step refinement on capturing key fire dynamics such as fingering and puffing, as mesh resolutions approach O(1) cm. A novel design-order, discrete-ordinate-method discretization methodology is established by use of an analytical thermal/participating media radiation solution on both low-order hexahedral and tetrahedral mesh topologies in addition to quadratic hexahedral elements. The coupling between heat losses and the flamelet thermochemical state is achieved by augmenting the unsteady flamelet equation set with a heat loss source term. Soot and radiation source terms are determined using flamelet approaches for the full range of heat losses experienced in fire applications including radiative extinction. The proposed modeling and simulation paradigm are validated using pool surface radiative heat flux, maximum centerline temperature location, and puffing frequency data, all of which are predicted within 10% accuracy. Simulations demonstrate that under-resolved meshes predict an overly conservative radiative heat flux magnitude with improved comparisons as compared to a previously deployed hybrid Reynolds-averaged Navier-Stokes/eddy dissipation concept-based methodology.

More Details

A multi-physics computational investigation of droplet pathogen transport emanating from synthetic coughs and breathing

Atomization and Sprays

Domino, Stefan P.; Pierce, Flint P.; Hubbard, Joshua A.

In response to the global SARS-CoV-2 transmission pandemic, Sandia National Laboratories Rapid Lab-Directed Research and Development COVID-19 initiative has deployed a multi-physics, droplet-laden, turbulent low-Mach simulation tool to model pathogen-containing water droplets that emanate from synthetic human coughing and breathing. The low-Mach turbulent large-eddy simulation-based Eulerian/point-particle Lagrangian methodology directly couples mass, momentum, energy, and species to capture droplet evaporation physics that supports the ability to distinguish between droplets that deposit and those that persist in the environment. The cough mechanism is modeled as a pulsed spray with a prescribed log-normal droplet size distribution. Simulations demonstrate direct droplet deposition lengths in excess of three meters while the persistence of droplet nuclei entrained within a buoyant plume is noted. Including the effect of protective barriers demonstrates effective mitigation of large-droplet transport. For coughs into a protective barrier, jet impingement and large-scale recirculation can drive droplets vertically and back toward the subject while supporting persistence of droplet nuclei. Simulations in quiescent conditions demonstrate droplet preferential concentrations due to the coupling between vortex ring shedding and the subsequent advection of a series of three-dimensional rings that tilt and rise vertically due to a misalignment between the initial principle vortex trajectory and gravity. These resolved coughing simulations note vortex ring formation, roll-up and breakdown, while entraining droplet nuclei for large distances and time scales.

More Details

A Case Study on Pathogen Transport, Deposition, Evaporation and Transmission: Linking High-Fidelity Computational Fluid Dynamics Simulations to Probability of Infection

International Journal of Computational Fluid Dynamics

Domino, Stefan P.

A high-fidelity, low-Mach computational fluid dynamics simulation tool that includes evaporating droplets and variable-density turbulent flow coupling is well-suited to ascertain transmission probability and supports risk mitigation methods development for airborne infectious diseases such as COVID-19. A multi-physics large-eddy simulation-based paradigm is used to explore droplet and aerosol pathogen transport from a synthetic cough emanating from a kneeling humanoid. For an outdoor configuration that mimics the recent open-space social distance strategy of San Francisco, maximum primary droplet deposition distances are shown to approach 8.1 m in a moderate wind configuration with the aerosol plume transported in excess of 15 m. In quiescent conditions, the aerosol plume extends to approximately 4 m before the emanating pulsed jet becomes neutrally buoyant. A dose–response model, which is based on previous SARS coronavirus (SARS-CoV) data, is exercised on the high-fidelity aerosol transport database to establish relative risk at eighteen virtual receptor probe locations.

More Details

An assessment of atypical mesh topologies for low-Mach large-eddy simulation

Computers and Fluids

Domino, Stefan P.; Sakievich, Philip S.; Barone, Matthew F.

An implicit, low-dissipation, low-Mach, variable density control volume finite element formulation is used to explore foundational understanding of numerical accuracy for large-eddy simulation applications on hybrid meshes. Detailed simulation comparisons are made between low-order hexahedral, tetrahedral, pyramid, and wedge/prism topologies against a third-order, unstructured hexahedral topology. Using smooth analytical and manufactured low-Mach solutions, design-order convergence is established for the hexahedral, tetrahedral, pyramid, and wedge element topologies using a new open boundary condition based on energy-stable methodologies previously deployed within a finite-difference context. A wide range of simulations demonstrate that low-order hexahedral- and wedge-based element topologies behave nearly identically in both computed numerical errors and overall simulation timings. Moreover, low-order tetrahedral and pyramid element topologies also display nearly the same numerical characteristics. Although the superiority of the hexahedral-based topology is clearly demonstrated for trivial laminar, principally-aligned flows, e.g., a 1x2x10 channel flow with specified pressure drop, this advantage is reduced for non-aligned, turbulent flows including the Taylor–Green Vortex, turbulent plane channel flow (Reτ395), and buoyant flow past a heated cylinder. With the order of accuracy demonstrated for both homogenous and hybrid meshes, it is shown that solution verification for the selected complex flows can be established for all topology types. Although the number of elements in a mesh of like spacing comprised of tetrahedral, wedge, or pyramid elements increases as compared to the hexahedral counterpart, for wall-resolved large-eddy simulation, the increased assembly and residual evaluation computational time for non-hexahedral is offset by more efficient linear solver times. Finally, most simulation results indicate that modest polynomial promotion provides a significant increase in solution accuracy.

More Details

Nalu's Linear System Assembly using Tpetra

Domino, Stefan P.; Williams, Alan B.

The Nalu Exascale Wind application assembles linear systems using data structures provided by the Tpetra package in Trilinos. This note describes the initialization and assembly process. The purpose of this note is to help Nalu developers and maintainers to understand the code surrounding linear system assembly, in order to facilitate debugging, optimizations, and maintenance. 1 1 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. De- partment of Energy's National Nuclear Security Administration under contract DE-NA0003525. This report followed the Sandia National Laboratories formal review and approval process (SAND2019-0120), and is suitable for unlimited release. This page intentionally left blank.

More Details

Decrease time-to-solution through improved linear-system setup and solve

Hu, Jonathan J.; Thomas, Stephen T.; Dohrmann, Clark R.; Ananthan, Shreyas A.; Domino, Stefan P.; Williams, Alan B.; Sprague, Michael S.

The goal of the ExaWind project is to enable predictive simulations of wind farms composed of many MW-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. The primary code in the ExaWind project is Nalu, which is an unstructured-grid solver for the acoustically-incompressible Navier-Stokes equations, and mass continuity is maintained through pressure projection. The model consists of the mass-continuity Poisson-type equation for pressure and a momentum equation for the velocity. For such modeling approaches, simulation times are dominated by linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge problem, the moving meshes greatly affect overall solver costs as re-initialization of matrices and re-computation of preconditioners is required at every time step We describe in this report our efforts to decrease the setup and solution time for the mass-continuity Poisson system with respect to the benchmark timing results reported in FY18 Q1. In particular, we investigate improving and evaluating two types of algebraic multigrid (AMG) preconditioners: Classical Ruge-Stfiben AMG (C-AMG) and smoothed-aggregation AMG (SA-AMG), which are implemented in the Hypre and Trilinos/MueLu software stacks, respectively. Preconditioner performance was optimized through existing capabilities and settings.

More Details

Design-order, non-conformal low-Mach fluid algorithms using a hybrid CVFEM/DG approach

Journal of Computational Physics

Domino, Stefan P.

A hybrid, design-order sliding mesh algorithm, which uses a control volume finite element method (CVFEM), in conjunction with a discontinuous Galerkin (DG) approach at non-conformal interfaces, is outlined in the context of a low-Mach fluid dynamics equation set. This novel hybrid DG approach is also demonstrated to be compatible with a classic edge-based vertex centered (EBVC) scheme. For the CVFEM, element polynomial, P, promotion is used to extend the low-order P=1 CVFEM method to higher-order, i.e., P=2. An equal-order low-Mach pressure-stabilized methodology, with emphasis on the non-conformal interface boundary condition, is presented. A fully implicit matrix solver approach that accounts for the full stencil connectivity across the non-conformal interface is employed. A complete suite of formal verification studies using the method of manufactured solutions (MMS) is performed to verify the order of accuracy of the underlying methodology. The chosen suite of analytical verification cases range from a simple steady diffusion system to a traveling viscous vortex across mixed-order non-conformal interfaces. Results from all verification studies demonstrate either second- or third-order spatial accuracy and, for transient solutions, second-order temporal accuracy. Significant accuracy gains in manufactured solution error norms are noted even with modest promotion of the underlying polynomial order. The paper also demonstrates the CVFEM/DG methodology on two production-like simulation cases that include an inner block subjected to solid rotation, i.e., each of the simulations include a sliding mesh, non-conformal interface. The first production case presented is a turbulent flow past a high-rate-of-rotation cube (Re, 4000; RPM, 3600) on like and mixed-order polynomial interfaces. The final simulation case is a full-scale Vestas V27 225 kW wind turbine (tower and nacelle omitted) in which a hybrid topology, low-order mesh is used. Both production simulations provide confidence in the underlying capability and demonstrate the viability of this hybrid method for deployment towards high-fidelity wind energy validation and analysis.

More Details
Results 1–25 of 87
Results 1–25 of 87