Publications

Results 1–25 of 280
Skip to search filters

NNSA Minority Serving Institute Partnership Program (MSIPP)--Indigenous Mutual Partnership to Advanced Cybersecurity Technology (ASPIRE, IMPACT and PAMER); FY22 Q2 Progress Report

Atcitty, Stanley A.; Moriarty, Dylan; Hernandez, Virginia K.

The following report summarizes the status update during this quarter for the National Nuclear Security Agency (NNSA) initiated Minority Serving Institution Partnership Plan's (MSIPP) projects titled, Indigenous Mutual Partnership to Advanced Cybersecurity Technology (ASPIRE), Indigenous Mutual Partnership to Advanced Cybersecurity Technology (IMPACT) and Partnership for Advanced Manufacturing Education and Research (PAMER).

More Details

Identification of the defect dominating high temperature reverse leakage current in vertical GaN power diodes through deep level transient spectroscopy

Applied Physics Letters

DasGupta, Sandeepan D.; Slobodyan, O.S.; Smith, Trevor S.; Binder, Andrew B.; Flicker, Jack D.; Kaplar, Robert K.; Mueller, Jacob M.; Garcia Rodriguez, Luciano A.; Atcitty, Stanley A.

Deep level defects in wide bandgap semiconductors, whose response times are in the range of power converter switching times, can have a significant effect on converter efficiency. Here, we use deep level transient spectroscopy (DLTS) to evaluate such defect levels in the n-drift layer of vertical gallium nitride (v-GaN) power diodes with VBD ~ 1500 V. DLTS reveals three energy levels that are at ~0.6 eV (highest density), ~0.27 eV (lowest density), and ~45 meV (a dopant level) from the conduction band. Dopant extraction from capacitance–voltage measurement tests (C–V) at multiple temperatures enables trap density evaluation, and the ~0.6 eV trap has a density of 1.2 × 1015 cm-3. The 0.6 eV energy level and its density are similar to a defect that is known to cause current collapse in GaN based surface conducting devices (like high electron mobility transistors). Analysis of reverse bias currents over temperature in the v-GaN diodes indicates a predominant role of the same defect in determining reverse leakage current at high temperatures, reducing switching efficiency.

More Details

NNSA Minority Serving Institute Partnership Program (MSIPP)-- Partnership for Advanced Manufacturing Education and Research (PAMER) (Q1 FY2022 Progress Report)

Atcitty, Stanley A.; Moriarty, Dylan; Hernandez, Virginia K.

The following report summarizes the status update during this quarter for the National Nuclear Security Agency (NNSA) initiated Minority Serving Institution Partnership Plan's (MSIPP) project titled, Partnership for Advanced Manufacturing Education and Research (PAMER). In 2016, the National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) targeting Tribal Colleges and Universities (TCUs) to offer programs that will prepare students for technical careers in NNSA’s laboratories and production plants. The MSIPP consortium’s approach is as follows: 1) align investments at the college and university level to develop a curriculum and workforce needed to support NNSA’s nuclear weapon enterprise mission, and 2) to enhance research and education at under-represented colleges and universities.

More Details

Valuation of Behind-the-Meter Energy Storage in Hybrid Energy Systems

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Trevizan, Rodrigo D.; Nguyen, Tu A.; Atcitty, Stanley A.; Headley, Alexander J.

Many remote communities are subject to poor electric service, which low power quality and reliability being common concerns. To compensate, many isolated communities employ diesel generation units to bolster utility inputs or to fully support key loads in the event of an outage. While this is effective, it can be a very expensive mode of operation requiring oversized units to ensure reliable power. Declining prices of both renewable generation and energy storage systems have the potential to improve this situation, though careful planning is needed to make these hybrid energy systems financially attractive. This paper presents analytical methods to enable informed decision making with respect to future planning incorporating renewables and energy storage systems to enhance system reliability and reduce operating costs. These methods are demonstrated in a case study for the San Carlos Apache Tribe, which is located in a sparsely populated region next to Coolidge, Arizona that has limited power generation and transmission resources. Currently, the energy tariffs are high and the system suffers from frequent power interruptions, adding up to an average of around 100 power interruptions per year. To reduce electricity costs and improve power quality, the tribe is currently installing solar photovoltaic arrays in several sites inside of the reservation. We have analyzed the potential benefits and optimal of energy storage systems associated with solar power generation to reduce the tribe's costs with electricity and contribute to improve reliability of critical loads. Results show that energy storage has the potential to reduce electricity costs significantly and provide backup power for critical loads during several hours.

More Details

NNSA Minority Serving Institute Partnership Program (MSIPP)— Advanced Synergistic Program for Indigenous Research in Engineering (ASPIRE) (FY22 Q1 Progress Report)

Atcitty, Stanley A.; Moriarty, Dylan; Hernandez, Virginia K.

In 2016, the National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) targeting Tribal Colleges and Universities (TCUs) to offer programs that will prepare students for technical careers in NNSA’s laboratories and production plants. The MSIPP consortium’s approach is as follows: 1) align investments at the college and university level to develop a curriculum and workforce needed to support NNSA’s nuclear weapon enterprise mission, and 2) to enhance research and education at under-represented colleges and universities. The first TCU consortium that MSIPP launched was known as the Advanced Manufacturing Network Initiative (AMNI) whose purpose was to develop additive manufacturing (AM) learning opportunities. The AMNI consortium consisted of Bay Mills Community College, Cankdeska Cikana Community College, Navajo Tech University, Salish Kootenai Community College, Turtle Mountain Community College, and United Tribes Technical College. In 2016, the American Indian Higher Education Consortium (AIHEC), the AMNI consortium and the Southwestern Indian Polytechnic Institute (SIPI), in collaboration with Sandia National Labs, using a grant by NNSA hosted the first TCU Advanced Manufacturing Technology Summer Institute (TCU AMTSI). The AMNI consortium will officially end Sept. 2022. However, building on the successes of AMNI, in FY22 NNSA’s MSIPP launched three additional consortiums: (1) the Indigenous Mutual Partnership to Advanced Cybersecurity Technology (IMPACT), which focuses on STEM and cybersecurity, (2) the Advanced Synergistic Program for Indigenous Research in Engineering (ASPIRE), which focuses on STEM and the electrical and mechanical engineering skills set needed for renewable and distributed energy systems, and (3) the Partnership for Advanced Manufacturing Education and Research (PAMER), which focuses on developing and maintaining a sustainable pathway for a highly trained, next-generation additive manufacturing workforce and a corresponding community of subject matter experts for NNSA enterprises. The following report summarizes the status update during this quarter for the ASPIRE program.

More Details

Synthesis and behavior of bulk iron nitride soft magnets via high-pressure spark plasma sintering

Journal of Materials Research

Monson, Todd M.; Zheng, Baolong Z.; Delany, Robert E.; Pearce, Charles J.; Zhou, Yizhang Z.; Atcitty, Stanley A.; Lavernia, Enrique L.

Abstract

In this study, dense bulk iron nitrides (Fe x N) were synthesized for the first time ever using spark plasma sintering (SPS) of Fe x N powders. The Fe 4 N phase of iron nitride in particular has significant potential to serve as a new soft magnetic material in both transformer and inductor cores and electrical machines. The density of SPSed Fe x N increased with SPS temperature and pressure. The microstructure of the consolidated bulk Fe x N was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRD revealed a primary phase of Fe 4 N with secondary phases of Fe 3 N and metallic iron. Finite element analysis (FEA) was also applied to investigate and explain localized heating and temperature distribution during SPS. The effects of processing on interface bonding formation and phase evolution were investigated and discussed in detail to provide insight into fundamental phenomena and microstructural evolution in SPSed Fe x N.

Graphic abstract

More Details

Integration of energy storage with diesel generation in remote communities

MRS Energy and Sustainability

Trevizan, Rodrigo D.; Headley, Alexander J.; Geer, Robert; Atcitty, Stanley A.; Gyuk, Imre

Highlights: Battery energy storage may improve energy efficiency and reliability of hybrid energy systems composed by diesel and solar photovoltaic power generators serving isolated communities.In projects aiming update of power plants serving electrically isolated communities with redundant diesel generation, battery energy storage can improve overall economic performance of power supply system by reducing fuel usage, decreasing capital costs by replacing redundant diesel generation units, and increasing generator system life by shortening yearly runtime.Fast-acting battery energy storage systems with grid-forming inverters might have potential for improving drastically the reliability indices of isolated communities currently supplied by diesel generation. Abstract: This paper will highlight unique challenges and opportunities with regard to energy storage utilization in remote, self-sustaining communities. The energy management of such areas has unique concerns. Diesel generation is often the go-to power source in these scenarios, but these systems are not devoid of issues. Without dedicated maintenance crews as in large, interconnected network areas, minor interruptions can be frequent and invasive not only for those who lose power, but also for those in the community that must then correct any faults. Although the immediate financial benefits are perhaps not readily apparent, energy storage could be used to address concerns related to reliability, automation, fuel supply concerns, generator degradation, solar utilization, and, yes, fuel costs to name a few. These ideas are shown through a case study of the Levelock Village of Alaska. Currently, the community is faced with high diesel prices and a difficult supply chain, which makes temporary loss of power very common and reductions in fuel consumption very impactful. This study will investigate the benefits that an energy storage system could bring to the overall system life, fuel costs, and reliability of the power supply. The variable efficiency of the generators, impact of startup/shutdown process, and low-load operation concerns are considered. The technological benefits of the combined system will be explored for various scenarios of future diesel prices and technology maintenance/replacement costs as well as for the avoidance of power interruptions that are so common in the community currently. Graphic abstract: [Figure not available: see fulltext.] Discussion: In several cases, energy storage can provide a means to promote energy equity by improving remote communities’ power supply reliability to levels closer to what the average urban consumer experiences at a reduced cost compared to transmission buildout. Furthermore, energy equity represents a hard-to-quantify benefit achieved by the integration of energy storage to isolated power systems of under-served communities, which suggests that the financial aspects of such projects should be questioned as the main performance criterion. To improve battery energy storage system valuation for diesel-based power systems, integration analysis must be holistic and go beyond fuel savings to capture every value stream possible.

More Details

Tribal Colleges and Universities/Advanced Manufacturing Network Initiative: Phase II Sandia Technical Assistance (FY21 Q4 Progress Report)

Atcitty, Stanley A.

The National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) 1) to align investments in a university capacity and workforce development with the NNSA mission to develop the needed skills and talent for NNSA’s enduring technical workforce at the laboratories and production plants, and 2) to enhance research and education at under-represented colleges and universities. Out of this effort, MSIPP launched a new consortium in early FY17 focused on Tribal Colleges and Universities (TCUs) known as the Advanced Manufacturing Network Initiative (AMNI). This consortium has been extended for FY20 and FY21. The following report summarizes the status update during this quarter.

More Details

Electrical Energy Storage Data Submission Guidelines, Version 2

Rosewater, David M.; Preger, Yuliya P.; Mueller, Jacob M.; Atcitty, Stanley A.; Willard, Steve W.; Smith, Morgan S.; Thompson, Joe T.; Long, Dirk L.

Energy storage technologies are positioned to play a substantial role in power delivery systems. They have the potential to serve as an effective new resource to maintain reliability and allow for increased penetration of renewable energy. However, because of their relative infancy, there is a lack of knowledge about how these resources truly operate over time. A data analysis can help ascertain the operational and performance characteristics of these emerging technologies. Rigorous testing and a data analysis are important for all stakeholders to ensure a safe, reliable system that performs predictably on a macro level. Standardizing testing and analysis approaches to verify the performance of energy storage devices, equipment, and systems when integrating them into the grid will improve the understanding and benefit of energy storage over time from technical and economic vantage points. Demonstrating the life-cycle value and capabilities of energy storage systems begins with the data that the provider supplies for the analysis. After a review of energy storage data received from several providers, some of these data have clearly shown to be inconsistent and incomplete, raising the question of their efficacy for a robust analysis. This report reviews and proposes general guidelines, such as sampling rates and data points, that providers must supply for a robust data analysis to take place. Consistent guidelines are the basis of a proper protocol and ensuing standards to (1) reduce the time that it takes for data to reach those who are providing the analysis; (2) allow them to better understand the energy storage installations; and (3) enable them to provide a high-quality analysis of the installations. The report is intended to serve as a starting point for what data points should be provided when monitoring. Readers are encouraged to use the guidance in the report to develop specifications for new systems, as well as enhance current efforts to ensure optimal storage performance. As battery technologies continue to advance and the industry expands, the report will be updated to remain current.

More Details

Tribal Colleges and Universities/Advanced Manufacturing Network Initiative Phase II Sandia Technical Assistance FY21 Q3 Progress Report

Atcitty, Stanley A.

The National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) to 1) align investments in a university capacity and workforce development with the NNSA mission to develop the needed skills and talent for NNSA’s enduring technical workforce at the laboratories and production plants, and 2) to enhance research and education at under-represented colleges and universities. Out of this effort, MSIPP launched a new consortium in early FY17 focused on Tribal Colleges and Universities (TCUs) known as the Advanced Manufacturing Network Initiative (AMNI). This consortium has been extended for FY20 and FY21. The following report summarizes the status update during this quarter.

More Details

Tribal Colleges and Universities/Advanced Manufacturing Network Initiative Phase II Sandia Technical Assistance (Q2 FY2021 Progress Report)

Atcitty, Stanley A.

The National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) to 1) align investments in a university capacity and workforce development with the NNSA mission to develop the needed skills and talent for NNSA’s enduring technical workforce at the laboratories and production plants, and 2) to enhance research and education at under-represented colleges and universities. Out of this effort, MSIPP launched a new consortium in early FY17 focused on Tribal Colleges and Universities (TCUs) known as the Advanced Manufacturing Network Initiative (AMNI). This consortium has been extended for FY20 and FY21. The following report summarizes the status update during this quarter.

More Details
Results 1–25 of 280
Results 1–25 of 280