The development of a next generation high-fidelity modeling code for wind plant applications is one of the central focus areas of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative. The code is based on a highly scalable framework, currently called Nalu-Wind. One key aspect of the model development is a coordinated formal validation program undertaken specifically to establish the predictive capability of Nalu-Wind for wind plant applications. The purpose of this document is to define the verification and validation (V&V) plan for the A2e high-fidelity modeling capability. It summarizes the V&V framework, identifies code capability users and use cases, describes model validation needs, and presents a timeline to meet those needs.
Compressible jet-in-crossflow interactions are difficult to simulate accurately using Reynolds-averaged Navier-Stokes (RANS) models. This could be due to simplifications inherent in RANS or the use of inappropriate RANS constants estimated by fitting to experiments of simple or canonical flows. Our previous work on Bayesian calibration of a k - ϵ model to experimental data had led to a weak hypothesis that inaccurate simulations could be due to inappropriate constants more than model-form inadequacies of RANS. In this work, Bayesian calibration of k - ϵ constants to a set of experiments that span a range of Mach numbers and jet strengths has been performed. The variation of the calibrated constants has been checked to assess the degree to which parametric estimates compensate for RANS's model-form errors. An analytical model of jet-in-crossflow interactions has also been developed, and estimates of k - ϵ constants that are free of any conflation of parametric and RANS's model-form uncertainties have been obtained. It has been found that the analytical k - ϵ constants provide mean-flow predictions that are similar to those provided by the calibrated constants. Further, both of them provide predictions that are far closer to experimental measurements than those computed using "nominal" values of these constants simply obtained from the literature. It can be concluded that the lack of predictive skill of RANS jet-in-crossflow simulations is mostly due to parametric inadequacies, and our analytical estimates may provide a simple way of obtaining predictive compressible jet-in-crossflow simulations.
We demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynoldsaveraged Navier-Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscosity model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models ("curve-fits"). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. We find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.
The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnel data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.
The resonance modes in Mach 0.94 turbulent flow over a cavity having a length-to-depth ratio of five were explored using time-resolved particle image velocimetry and time-resolved pressure sensitive paint. Mode-switching occurred in the velocity field simultaneous with the pressure field. The first cavity mode corresponded to large-scale motions in shear layer and in the vicinity of the recirculation region, whereas the second and third modes contained organized structures associated with shear layer vortices. Modal surface pressures exhibited streamwise periodicity generated by the interference of downstream-traveling disturbances in shear layer with upstream-traveling acoustical waves. Because of this interference, the modal velocity fields also exhibited local maxima at locations containing pressure minima and vice-versa. Modal convective (phase) velocities, based on cross-correlations of bandpass-filtered velocity fields, decreased with decreasing mode number as the modal activity resided in lower portions of the cavity. These phase velocities also exhibited streamwise periodicity caused by wave interference. The measurements demonstrate that despite the complexities inherent in compressible cavity flows, many of the most prevalent resonance dynamics can be described with simple acoustical analogies.
Simulations of the flow past a rectangular cavity containing a model captive store are performed using a hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation model. Calculated pressure fluctuation spectra are validated using measurements made on the same configuration in a trisonic wind tunnel at Mach numbers of 0.60, 0.80, and 1.47. The simulation results are used to calculate unsteady integrated forces and moments acting on the store. Spectra of the forces and moments, along with correlations calculated for force/moment pairs, reveal that a complex relationship exists between the unsteady integrated forces and the measured resonant cavity modes, as indicated in the cavity wall pressure measurements. The structure of identified cavity resonant tones is examined by visualization of filtered surface pressure fields.
Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.
Mach 0.94 flow over a cavity having a length-to-depth ratio of five was explored using time-resolved particle image velocimetry (TR-PIV) with a burst-mode laser. The data were used to probe the resonance dynamics of the first three cavity (Rossiter) tones. Bandpass filtering was employed to reveal the coherent flow structure associated with each tone. The first Rossiter mode was associated with a propagation of large scale structures in the recirculation region, while the second and third modes contained organized structures consistent with convecting vortical disturbances. The wavelengths of the second and third modes were quite similar to those observed in a previous study by the current authors using phase-averaged PIV. Convective velocities computed using cross correlations in the unfiltered data showed the convective velocity increased with streamwise distance in a fashion similar to other studies. Convective velocities during cavity resonance were found to decrease with decreasing mode number, consistent with the modal activity residing in lower portions of the cavity in regions of lower local mean velocities. The convective velocity fields associated with resonance exhibited a streamwise periodicity consistent with wall-normal undulations in the resonant velocity fields; however, additional work is required to confirm this is not an analysis artifact.
This work examines simulation requirements for ensuring accurate predictions of compressible cavity flows. Lessons learned from this study will be used in the future to study the effects of complex geometric features, representative of those found on real weapons bays, on compressible flow past open cavities. A hybrid RANS/LES simulation method is applied to a rectangular cavity with length-to-depth ratio of 7, in order to first validate the model for this class of flows. Detailed studies of mesh resolution, absorbing boundary condition formulation, and boundary zone extent are included and guidelines are developed for ensuring accurate prediction of cavity pressure fluctuations.
An approach for building energy-stable Galerkin reduced order models (ROMs) for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. This method is an extension of earlier work by the authors specific to the equations of linearized compressible inviscid flow. The key idea is to apply to the PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. For linear problems, the desired transformation is induced by a special inner product, termed the "symmetry inner product", which is derived herein for several systems of physical interest. Connections are established between the proposed approach and other stability-preserving model reduction methods, giving the paper a review flavor. More specifically, it is shown that a discrete counterpart of this inner product is a weighted L2 inner product obtained by solving a Lyapunov equation, first proposed by Rowley et al. and termed herein the "Lyapunov inner product". Comparisons between the symmetry inner product and the Lyapunov inner product are made, and the performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.
We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of the calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal values of the turbulence model parameters, was parametric uncertainty, which was rectified by calibration. Post-calibration, the dominant contribution to model inaccuraries are due to the structural errors in RANS.
The datasets being released consist of cavity configurations for which measurements were made in the Sandia Trisonic Wind Tunnel (TWT) facility. The cavities were mounted on the walls (ceiling/floor) of the wind tunnel, with the approach flow boundary layer thickness dictated by the run-length from the settling chamber of the tunnel. No measurements of the boundary layer for the different cases were made explicitly. However, prior measurements of the boundary layer have been made and simulations of the tunnel from the settling chamber on have shown that this method yields the correct boundary layer thickness at the leading edge of the cavity. The measurements focused on the cavity flow field itself and the cavity wall pressures. For each of the cases, the stagnation conditions are prescribed in order to obtain the correct inflow conditions upstream of the cavity. The wind tunnel contours have been approved for public release and will be made available also.
This report describes work performed from June 2012 through May 2014 as a part of a Sandia Early Career Laboratory Directed Research and Development (LDRD) project led by the first author. The objective of the project is to investigate methods for building stable and efficient proper orthogonal decomposition (POD)/Galerkin reduced order models (ROMs): models derived from a sequence of high-fidelity simulations but having a much lower computational cost. Since they are, by construction, small and fast, ROMs can enable real-time simulations of complex systems for onthe- spot analysis, control and decision-making in the presence of uncertainty. Of particular interest to Sandia is the use of ROMs for the quantification of the compressible captive-carry environment, simulated for the design and qualification of nuclear weapons systems. It is an unfortunate reality that many ROM techniques are computationally intractable or lack an a priori stability guarantee for compressible flows. For this reason, this LDRD project focuses on the development of techniques for building provably stable projection-based ROMs. Model reduction approaches based on continuous as well as discrete projection are considered. In the first part of this report, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. The key idea is to apply a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. It is shown that, for many PDE systems including the linearized compressible Euler and linearized compressible Navier-Stokes equations, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Attention is then turned to nonlinear conservation laws. A new transformation and corresponding energy-based inner product for the full nonlinear compressible Navier-Stokes equations is derived, and it is demonstrated that if a Galerkin ROM is constructed in this inner product, the ROM system energy will be bounded in a way that is consistent with the behavior of the exact solution to these PDEs, i.e., the ROM will be energy-stable. The viability of the linear as well as nonlinear continuous projection model reduction approaches developed as a part of this project is evaluated on several test cases, including the cavity configuration of interest in the targeted application area. In the second part of this report, some POD/Galerkin approaches for building stable ROMs using discrete projection are explored. It is shown that, for generic linear time-invariant (LTI) systems, a discrete counterpart of the continuous symmetry inner product is a weighted L2 inner product obtained by solving a Lyapunov equation. This inner product was first proposed by Rowley et al., and is termed herein the “Lyapunov inner product“. Comparisons between the symmetry inner product and the Lyapunov inner product are made, and the performance of ROMs constructed using these inner products is evaluated on several benchmark test cases. Also in the second part of this report, a new ROM stabilization approach, termed “ROM stabilization via optimization-based eigenvalue reassignment“, is developed for generic LTI systems. At the heart of this method is a constrained nonlinear least-squares optimization problem that is formulated and solved numerically to ensure accuracy of the stabilized ROM. Numerical studies reveal that the optimization problem is computationally inexpensive to solve, and that the new stabilization approach delivers ROMs that are stable as well as accurate. Summaries of “lessons learned“ and perspectives for future work motivated by this LDRD project are provided at the end of each of the two main chapters.
Simulations of a rectangular cavity containing a model captive store are performed using a Hybrid Reynolds-averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) model. The fluid flow simulations are coupled to a structural dynamics finite element model using a one-way pressure transfer procedure. Simulation results for pressure fluctuation spectra and store acceleration are compared to measurements made on the same configuration in a tri-sonic wind tunnel at Mach numbers of 0.60, 0.80, and 1.47. The simulation results are used to calculate unsteady integrated forces and moments acting on the store. Spectra of the forces and moments reveal that a complex relationship exists between the unsteady integrated forces and the measured resonant cavity modes as indicated in the cavity wall pressure measurements. Predictions of the store accelerations from the coupled model show some success in predicting both forced and natural modal responses of the store within the cavity environment, while also highlighting some challenges in obtaining statistically converged results for this class of problems.
We develop a novel calibration approach to address the problem of predictive ke RANS simulations of jet-incrossflow. Our approach is based on the hypothesis that predictive ke parameters can be obtained by estimating them from a strongly vortical flow, specifically, flow over a square cylinder. In this study, we estimate three ke parameters, C%CE%BC, Ce2 and Ce1 by fitting 2D RANS simulations to experimental data. We use polynomial surrogates of 2D RANS for this purpose. We conduct an ensemble of 2D RANS runs using samples of (C%CE%BC;Ce2;Ce1) and regress Reynolds stresses to the samples using a simple polynomial. We then use this surrogate of the 2D RANS model to infer a joint distribution for the ke parameters by solving a Bayesian inverse problem, conditioned on the experimental data. The calibrated (C%CE%BC;Ce2;Ce1) distribution is used to seed an ensemble of 3D jet-in-crossflow simulations. We compare the ensemble's predictions of the flowfield, at two planes, to PIV measurements and estimate the predictive skill of the calibrated 3D RANS model. We also compare it against 3D RANS predictions using the nominal (uncalibrated) values of (C%CE%BC;Ce2;Ce1), and find that calibration delivers a significant improvement to the predictive skill of the 3D RANS model. We repeat the calibration using surrogate models based on kriging and find that the calibration, based on these more accurate models, is not much better that those obtained with simple polynomial surrogates. We discuss the reasons for this rather surprising outcome.