Publications

Results 1–50 of 266
Skip to search filters

Enabling power measurement and control on Astra: The first petascale Arm supercomputer

Concurrency and Computation: Practice and Experience

Grant, Ryan E.; Hammond, Simon D.; Laros, James H.; Levenhagen, Michael J.; Olivier, Stephen L.; Pedretti, Kevin P.; Ward, Harry L.; Younge, Andrew J.

Astra, deployed in 2018, was the first petascale supercomputer to utilize processors based on the ARM instruction set. The system was also the first under Sandia's Vanguard program which seeks to provide an evaluation vehicle for novel technologies that with refinement could be utilized in demanding, large-scale HPC environments. In addition to ARM, several other important first-of-a-kind developments were used in the machine, including new approaches to cooling the datacenter and machine. This article documents our experiences building a power measurement and control infrastructure for Astra. While this is often beyond the control of users today, the accurate measurement, cataloging, and evaluation of power, as our experiences show, is critical to the successful deployment of a large-scale platform. While such systems exist in part for other architectures, Astra required new development to support the novel Marvell ThunderX2 processor used in compute nodes. In addition to documenting the measurement of power during system bring up and for subsequent on-going routine use, we present results associated with controlling the power usage of the processor, an area which is becoming of progressively greater interest as data centers and supercomputing sites look to improve compute/energy efficiency and find additional sources for full system optimization.

More Details

A-SST Initial Specification

Rodrigues, Arun; Hammond, Simon D.; Hemmert, Karl S.; Hughes, Clayton H.; Kenny, Joseph P.; Voskuilen, Gwendolyn R.

The U.S. Army Research Office (ARO), in partnership with IARPA, are investigating innovative, efficient, and scalable computer architectures that are capable of executing next-generation large scale data-analytic applications. These applications are increasingly sparse, unstructured, non-local, and heterogeneous. Under the Advanced Graphic Intelligence Logical computing Environment (AGILE) program, Performer teams will be asked to design computer architectures to meet the future needs of the DoD and the Intelligence Community (IC). This design effort will require flexible, scalable, and detailed simulation to assess the performance, efficiency, and validity of their designs. To support AGILE, Sandia National Labs will be providing the AGILE-enhanced Structural Simulation Toolkit (A-SST). This toolkit is a computer architecture simulation framework designed to support fast, parallel, and multi-scale simulation of novel architectures. This document describes the A-SST framework, some of its library of simulation models, and how it may be used by AGILE Performers.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Aaziz, Omar R.; Allan, Benjamin A.; Brandt, James M.; Cook, Jeanine C.; Devine, Karen D.; Elliott, James E.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena L.; Moore, Stan G.; Olivier, Stephen L.; Pedretti, Kevin P.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Nick T.; Tucker, Tom T.; Vaughan, Courtenay T.; Walton, Sara P.

Scientific applications run on high-performance computing (HPC) systems are critical for many national security missions within Sandia and the NNSA complex. However, these applications often face performance degradation and even failures that are challenging to diagnose. To provide unprecedented insight into these issues, the HPC Development, HPC Systems, Computational Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC system and application monitoring and analysis capability by extending Sandia's Kokkos application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and LDMS enable collection and storage of application data during run time, as it is generated, with negligible overhead. This data is combined with HPC system data within the extended analysis pipeline to present relevant visualizations of derived system and application metrics that can be viewed at run time or post run. This new capability was evaluated using several week-long, 290-node runs of Sandia's ElectroMagnetic Plasma In Realistic Environments ( EMPIRE ) modeling and design tool and resulted in 1TB of application data and 50TB of system data. EMPIRE developers remarked this capability was incredibly helpful for quickly assessing application health and performance alongside system state. In short, this milestone work built the foundation for expansive HPC system and application data collection, storage, analysis, visualization, and feedback framework that will increase total scientific output of Sandia's HPC users.

More Details

ERAS: Enabling the Integration of Real-World Intellectual Properties (IPs) in Architectural Simulators

Nema, Shubham N.; Razdan, Rohin R.; Rodrigues, Arun; Hemmert, Karl S.; Voskuilen, Gwendolyn R.; Adak, Debratim A.; Hammond, Simon D.; Awad, Amro A.; Hughes, Clayton H.

Sandia National Laboratories is investigating scalable architectural simulation capabilities with a focus on simulating and evaluating highly scalable supercomputers for high performance computing applications. There is a growing demand for RTL model integration to provide the capability to simulate customized node architectures and heterogeneous systems. This report describes the first steps integrating the ESSENTial Signal Simulation Enabled by Netlist Transforms (ESSENT) tool with the Structural Simulation Toolkit (SST). ESSENT can emit C++ models from models written in FIRRTL to automatically generate components. The integration workflow will automatically generate the SST component and necessary interfaces to ’plug’ the ESSENT model into the SST framework.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Brandt, James M.; Cook, Jeanine C.; Aaziz, Omar R.; Allan, Benjamin A.; Devine, Karen D.; Elliott, James J.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena L.; Moore, Stan G.; Olivier, Stephen L.; Pedretti, Kevin P.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Tom T.; Tucker, Nick T.; Vaughan, Courtenay T.; Walton, Sara P.

Abstract not provided.

Using MLIR Framework for Codesign of ML Architectures Algorithms and Simulation Tools

Lewis, Cannada L.; Hughes, Clayton H.; Hammond, Simon D.; Rajamanickam, Sivasankaran R.

MLIR (Multi-Level Intermediate Representation), is an extensible compiler framework that supports high-level data structures and operation constructs. These higher-level code representations are particularly applicable to the artificial intelligence and machine learning (AI/ML) domain, allowing developers to more easily support upcoming heterogeneous AI/ML accelerators and develop flexible domain specific compilers/frameworks with higher-level intermediate representations (IRs) and advanced compiler optimizations. The result of using MLIR within the LLVM compiler framework is expected to yield significant improvement in the quality of generated machine code, which in turn will result in improved performance and hardware efficiency

More Details

DeACT: Architecture-Aware Virtual Memory Support for Fabric Attached Memory Systems

Proceedings - International Symposium on High-Performance Computer Architecture

Kommareddy, Vamsee R.; Hughes, Clayton H.; Hammond, Simon D.; Awad, Amro

1 The exponential growth of data has driven technology providers to develop new protocols, such as cache coherent interconnects and memory semantic fabrics, to help users and facilities leverage advances in memory technologies to satisfy these growing memory and storage demands. Using these new protocols, fabric-Attached memories (FAM) can be directly attached to a system interconnect and be easily integrated with a variety of processing elements (PEs). Moreover, systems that support FAM can be smoothly upgraded and allow multiple PEs to share the FAM memory pools using well-defined protocols. The sharing of FAM between PEs allows efficient data sharing, improves memory utilization, reduces cost by allowing flexible integration of different PEs and memory modules from several vendors, and makes it easier to upgrade the system. One promising use-case for FAMs is in High-Performance Compute (HPC) systems, where the underutilization of memory is a major challenge. However, adopting FAMs in HPC systems brings new challenges. In addition to cost, flexibility, and efficiency, one particular problem that requires rethinking is virtual memory support for security and performance. To address these challenges, this paper presents decoupled access control and address translation (DeACT), a novel virtual memory implementation that supports HPC systems equipped with FAM. Compared to the state-of-The-Art two-level translation approach, DeACT achieves speedup of up to 4.59x (1.8x on average) without compromising security.1Part of this work was done when Vamsee was working under the supervision of Amro Awad at UCF. Amro Awad is now with the ECE Department at NC State.

More Details

Stealth-Persist: Architectural Support for Persistent Applications in Hybrid Memory Systems

Proceedings - International Symposium on High-Performance Computer Architecture

Alwadi, Mazen; Kommareddy, Vamsee R.; Hughes, Clayton H.; Hammond, Simon D.; Awad, Amro

Non-volatile memories (NVMs) have the characteristics of both traditional storage systems (persistent) and traditional memory systems (byte-Addressable). However, they suffer from high write latency and have a limited write endurance. Researchers have proposed hybrid memory systems that combine DRAM and NVM, utilizing the lower latency of the DRAM to hide some of the shortcomings of the NVM-improving system's performance by caching resident NVM data in the DRAM. However, this can nullify the persistency of the cached pages, leading to a question of trade-offs in terms of performance and reliability. In this paper, we propose Stealth-Persist, a novel architecture support feature that allows applications that need persistence to run in the DRAM while maintaining the persistency features provided by the NVM. Stealth-Persist creates the illusion of a persistent memory for the application to use, while utilizing the DRAM for performance optimizations. Our experimental results show that Stealth-Persist improves the performance by 42.02% for persistent applications.

More Details

SST-GPU: A Scalable SST GPU Component for Performance Modeling and Profiling

Hughes, Clayton H.; Hammond, Simon D.; Zhang, Mengchi Z.; Liu, Yechen L.; Rogers, Tim R.; Hoekstra, Robert J.

Programmable accelerators have become commonplace in modern computing systems. Advances in programming models and the availability of unprecedented amounts of data have created a space for massively parallel accelerators capable of maintaining context for thousands of concurrent threads resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several massively parallel computing cores. One path for the design of future supercomputers relies on an ability to model the performance of these massively parallel cores at scale. The SST framework has been proven to scale up to run simulations containing tens of thousands of nodes. A previous report described the initial integration of the open-source, execution-driven GPU simulator, GPGPU-Sim, into the SST framework. This report discusses the results of the integration and how to use the new GPU component in SST. It also provides examples of what it can be used to analyze and a correlation study showing how closely the execution matches that of a Nvidia V100 GPU when running kernels and mini-apps.

More Details

Chronicles of astra: Challenges and lessons from the first petascale arm supercomputer

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Pedretti, Kevin P.; Younge, Andrew J.; Hammond, Simon D.; Laros, James H.; Curry, Matthew J.; Aguilar, Michael J.; Hoekstra, Robert J.; Brightwell, Ronald B.

Arm processors have been explored in HPC for several years, however there has not yet been a demonstration of viability for supporting large-scale production workloads. In this paper, we offer a retrospective on the process of bringing up Astra, the first Petascale supercomputer based on 64-bit Arm processors, and validating its ability to run production HPC applications. Through this process several immature technology gaps were addressed, including software stack enablement, Linux bugs at scale, thermal management issues, power management capabilities, and advanced container support. From this experience, several lessons learned are formulated that contributed to the successful deployment of Astra. These insights can be helpful to accelerate deploying and maturing other first-seen HPC technologies. With Astra now supporting many users running a diverse set of production applications at multi-thousand node scales, we believe this constitutes strong supporting evidence that Arm is a viable technology for even the largest-scale supercomputer deployments.

More Details

PreFAM: Understanding the Impact of Prefetching in Fabric-Attached Memory Architectures

ACM International Conference Proceeding Series

Kommareddy, Vamsee R.; Kotra, Jagadish; Hughes, Clayton H.; Hammond, Simon D.; Awad, Amro

With many recent advances in interconnect technologies and memory interfaces, disaggregated memory systems are approaching industrial adoption. For instance, the recent Gen-Z consortium focuses on a new memory semantic protocol that enables fabric-attached memories (FAM), where the memory and other compute units can be directly attached to fabric interconnects. Decoupling of memory from compute units becomes a feasible option as the rate of data transfer increases due to the emergence of novel interconnect technologies, such as Silicon Photonic Interconnects. Disaggregated memories not only enable more efficient use of capacity (minimizes under-utilization) they also allow easy integration of evolving technologies. Additionally, they simplify the programming model at the same time allowing efficient sharing of data. However, the latency of accessing the data in these Fabric Attached disaggregated Memories (FAMs) is dependent on the latency imposed by the fabric interfaces. To reduce memory access latency and to improve the performance of FAM systems, in this paper, we explore techniques to prefetch data from FAMs to the local memory present in the node (PreFAM). We realize that since the memory access latency is high in FAMs, prefetching a cache block (64 bytes) from FAM can be inefficient, since the possibility of issuing demand requests before the completion of prefetch requests, to the same FAM locations, is high. Hence, we explore predicting and prefetching FAM blocks at a distance; prefetching blocks which are going to be accessed in future but not immediately. We show that, with prefetching, the performance of FAM architectures increases by 38.84%, while memory access latency is improved by 39.6%, with only 17.65% increase in the number of accesses to the FAM, on average. Further, by prefetching at a distance we show a performance improvement of 72.23%.

More Details

Scalable generation of graphs for benchmarking HPC community-detection algorithms

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Slota, George M.; Berry, Jonathan W.; Hammond, Simon D.; Olivier, Stephen L.; Phillips, Cynthia A.; Rajamanickam, Sivasankaran R.

Community detection in graphs is a canonical social network analysis method. We consider the problem of generating suites of teras-cale synthetic social networks to compare the solution quality of parallel community-detection methods. The standard method, based on the graph generator of Lancichinetti, Fortunato, and Radicchi (LFR), has been used extensively for modest-scale graphs, but has inherent scalability limitations. We provide an alternative, based on the scalable Block Two-Level Erdos-Renyi (BTER) graph generator, that enables HPC-scale evaluation of solution quality in the style of LFR. Our approach varies community coherence, and retains other important properties. Our methods can scale real-world networks, e.g., to create a version of the Friendster network that is 512 times larger. With BTER's inherent scalability, we can generate a 15-terabyte graph (4.6B vertices, 925B edges) in just over one minute. We demonstrate our capability by showing that label-propagation community-detection algorithm can be strong-scaled with negligible solution-quality loss.

More Details

Page migration support for disaggregated non-volatile memories

ACM International Conference Proceeding Series

Kommareddy, Vamsee R.; Hammond, Simon D.; Hughes, Clayton H.; Samih, Ahmad; Awad, Amro

As demands for memory-intensive applications continue to grow, the memory capacity of each computing node is expected to grow at a similar pace. In high-performance computing (HPC) systems, the memory capacity per compute node is decided upon the most demanding application that would likely run on such system, and hence the average capacity per node in future HPC systems is expected to grow significantly. However, since HPC systems run many applications with different capacity demands, a large percentage of the overall memory capacity will likely be underutilized; memory modules can be thought of as private memory for its corresponding computing node. Thus, as HPC systems are moving towards the exascale era, a better utilization of memory is strongly desired. Moreover, upgrading memory system requires significant efforts. Fortunately, disaggregated memory systems promise better utilization by defining regions of global memory, typically referred to as memory blades, which can be accessed by all computing nodes in the system, thus achieving much better utilization. Disaggregated memory systems are expected to be built using dense, power-efficient memory technologies. Thus, emerging nonvolatile memories (NVMs) are placing themselves as the main building blocks for such systems. However, NVMs are slower than DRAM. Therefore, it is expected that each computing node would have a small local memory that is based on either HBM or DRAM, whereas a large shared NVM memory would be accessible by all nodes. Managing such system with global and local memory requires a novel hardware/software co-design to initiate page migration between global and local memory to maximize performance while enabling access to huge shared memory. In this paper we provide support to migrate pages, investigate such memory management aspects and the major system-level aspects that can affect design decisions in disaggregated NVM systems

More Details

Balar: A SST GPU Component for Performance Modeling and Profiling

Hughes, Clayton H.; Hammond, Simon D.; Khairy, Mahmoud K.; Zhang, Mengchi Z.; Green, Roland G.; Rogers, Timothy R.; Hoekstra, Robert J.

Programmable accelerators have become commonplace in modern computing systems. Advances in programming models and the availability of massive amounts of data have created a space for massively parallel accelerators capable of maintaining context for thousands of concurrent threads resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several massively parallel computing cores. One path for the design of future supercomputers relies on an ability to model the performance of these massively parallel cores at scale. The SST framework has been proven to scale up to run simulations containing tens of thousands of nodes. A previous report described the initial integration of the open-source, execution-driven GPU simulator, GPGPU-Sim, into the SST framework. This report discusses the results of the integration and how to use the new GPU component in SST. It also provides examples of what it can be used to analyze and a correlation study showing how closely the execution matches that of a Nvidia V100 GPU when running kernels and mini-apps.

More Details

Evaluating the Marvell ThunderX2 Server Processor for HPC Workloads

2019 International Conference on High Performance Computing and Simulation, HPCS 2019

Hammond, Simon D.; Hughes, Clayton H.; Levenhagen, Michael J.; Vaughan, Courtenay T.; Younge, Andrew J.; Schwaller, Benjamin S.; Aguilar, Michael J.; Pedretti, Kevin P.; Laros, James H.

The high performance computing industry is undergoing a period of substantial change. Not least because of fabrication and lithographic challenges in the manufacturing of next-generation processors. As such challenges mount, the industry is looking to generate higher performance from additional functionality in the micro-architecture space as well as a greater emphasis on efficiency in the design of networkon-chip resources and memory subsystems. Such variation in design opens opportunities for new entrants in the data center and server markets where varying compute-to-memory ratios can present end users with more efficient node designs for particular workloads. In this paper we compare the recently released Marvell ThunderX2 Arm processor - arguably the first high-performance computing capable Arm design available in the marketplace. We perform a set of micro-benchmarking and mini-application evaluation on the ThunderX2 comparing it with Intel's Haswell and Skylake Xeon server parts commonly used in contemporary HPC designs. Our findings show that no one processor performs the best across all benchmarks, but that the ThunderX2 excels in areas demanding high memory bandwidth due to the provisioning of more memory channels in its design. We conclude that the ThunderX2 is a serious contender in the HPC server segment and has the potential to offer supercomputing sites with a viable high-performance alternative to existing designs from established industry players.

More Details

Investigating Fairness in Disaggregated Non-Volatile Memories

Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI

Kommareddy, Vamsee R.; Hughes, Clayton H.; Hammond, Simon D.; Awad, Amro

Many applications have growing demands for memory, particularly in the HPC space, making the memory system a potential bottleneck of next-generation computing systems. Sharing the memory system across processor sockets and nodes becomes a compelling argument given that memory technology is scaling at a slower rate than processor technology. Moreover, as many applications rely on shared data, e.g., graph applications and database workloads, having a large number of nodes accessing shared memory allows for efficient use of resources and avoids duplicating huge files, which can be infeasible for large graphs or scientific data. As new memory technologies come on the market, the flexibility of upgrading memory and system updates become major a concern, disaggregated memory systems where memory is shared across different computing nodes, e.g., System-on-Chip (SoC), is expected to become the most common design/architecture on memory-centric systems, e.g., The Machine project from HP Labs. However, due to the nature of such systems, different users and applications compete for the available memory bandwidth, which can lead to severe contention due to memory traffic from different SoCs. In this paper, we discuss the contention problem in disaggregated memory systems and suggest mechanisms to ensure memory fairness and enforce QoS. Our simulation results show that employing our proposed QoS techniques can speed up memory response time by up to 55%.

More Details
Results 1–50 of 266
Results 1–50 of 266