Analysis of Experimental Shock Propagation through a Diverse Set of Geometric Cavities Embedded in Lab-Scale Polymer Cubes
Experiments were designed and conducted to investigate the impact that geometric cavities have on the transfer of energy from an embedded explosion to the surface of the physical domain. The experimental domains were fabricated as 3-inch polymer cubes, with varying cavity geometries centered in the cubes. The energy transfer, represented as a shock wave, was generated by the detonation of an exploding bridgewire at the center of the cavity. The shock propagation was tracked by schlieren imaging through the optically accessible polymer. The magnitude of energy transferred to the surface was recorded by an array of pressure sensors. A minimum of five experimental runs were conducted for each cavity geometry and statistical results were developed and compared. Results demonstrated the decoupling effect that geometric cavities produce on the energy field at the surface.