Publications

20 Results
Skip to search filters

Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

Composites Part B: Engineering

Nelson, Stacy M.; English, Shawn A.; Briggs, Timothy B.

Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be defined through estimation. The objectives of this study deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. The presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.

More Details

Quasi-Static Indentation Analysis of Carbon-Fiber Laminates

Briggs, Timothy B.; English, Shawn A.; Nelson, Stacy M.

A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

More Details

Criteria for initiation of delamination in quasi-static punch-shear tests of a carbon-fiber composite material

Chin, Eric B.; English, Shawn A.; Briggs, Timothy B.

V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.

More Details

Verification and Validation of Carbon-Fiber Laminate Low Velocity Impact Simulations

English, Shawn A.; Nelson, Stacy M.; Briggs, Timothy B.; Brown, Arthur B.

Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importance as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.

More Details

A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model

English, Shawn A.

A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

More Details

Uncertainty quantification and parameter study related to the analysis of a composite material loaded in four-point flexure

CAMX 2014 - Composites and Advanced Materials Expo: Combined Strength. Unsurpassed Innovation.

Nelson, Stacy M.; English, Shawn A.; Briggs, Timothy B.

More Details

Validation of carbon-fiber laminate simulations with low velocity impact experiments

CAMX 2014 - Composites and Advanced Materials Expo: Combined Strength. Unsurpassed Innovation.

English, Shawn A.; Nelson, Stacy M.; Krafcik, Karen L.; Moore, David G.; Kernen, Burke L.; Briggs, Timothy B.

Presented is a model verification and validation effort using low velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. The flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary metrics of validation will be the force time history measured through the instrumented indenter and initial and final velocities. The simulations, which are run on in-house software, will consist of all physics and material parameters of importance as determined by a sensitivity analysis conducted on the full LVI simulation. The orthotropic damage and failure constitutive model used for the lamina is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.

More Details

A micro to macro approach to polymer matrix composites damage modeling : final LDRD report

English, Shawn A.; Brown, Arthur B.; Briggs, Timothy B.

Capabilities are developed, verified and validated to generate constitutive responses using material and geometric measurements with representative volume elements (RVE). The geometrically accurate RVEs are used for determining elastic properties and damage initiation and propagation analysis. Finite element modeling of the meso-structure over the distribution of characterizing measurements is automated and various boundary conditions are applied. Plain and harness weave composites are investigated. Continuum yarn damage, softening behavior and an elastic-plastic matrix are combined with known materials and geometries in order to estimate the macroscopic response as characterized by a set of orthotropic material parameters. Damage mechanics and coupling effects are investigated and macroscopic material models are demonstrated and discussed. Prediction of the elastic, damage, and failure behavior of woven composites will aid in macroscopic constitutive characterization for modeling and optimizing advanced composite systems.

More Details

A 3D Orthotropic Elastic Continuum Damage Material Model

English, Shawn A.; Brown, Arthur B.

A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

More Details
20 Results
20 Results