Publications

4 Results
Skip to search filters

Earthquake warning system for infrastructures : a scoping analysis

Kelic, Andjelka; Stamber, Kevin L.; Brodsky, Nancy S.; Vugrin, Eric D.; Corbet, Thomas F.; O'Connor, Sharon L.

This report provides the results of a scoping study evaluating the potential risk reduction value of a hypothetical, earthquake early-warning system. The study was based on an analysis of the actions that could be taken to reduce risks to population and infrastructures, how much time would be required to take each action and the potential consequences of false alarms given the nature of the action. The results of the scoping analysis indicate that risks could be reduced through improving existing event notification systems and individual responses to the notification; and production and utilization of more detailed risk maps for local planning. Detailed maps and training programs, based on existing knowledge of geologic conditions and processes, would reduce uncertainty in the consequence portion of the risk analysis. Uncertainties in the timing, magnitude and location of earthquakes and the potential impacts of false alarms will present major challenges to the value of an early-warning system.

More Details

Nuclear power plant security assessment technical manual

Whitehead, Donnie W.; Potter, Claude S.; O'Connor, Sharon L.

This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and evaluation of physical security for all future plants. Note that the original NUREG/CR-1345 remains valid for many light water reactor designs. While the focus of this document is on new plants, existing nuclear power plants and nuclear material facilities may be able to apply these best practices and security system technologies when upgrading or modifying their physical protection systems.

More Details

When Materials Matter--Analyzing, Predicting, and Preventing Disasters

Matalucci, Rudolph V.; O'Connor, Sharon L.

The mission of the Architectural Surety{trademark} program at Sandia National Laboratories is to assure the performance of buildings, facilities, and other infrastructure systems under normal, abnormal, and malevolent threat conditions. Through educational outreach efforts in the classroom, at conferences, and presentations such as this one, public and professional awareness of the need to defuse and mitigate such threats is increased. Buildings, airports, utilities, and other kinds of infrastructure deteriorate over time, as evidenced most dramatically by the crumbling cities and aging buildings, bridges, and other facility systems. Natural disasters such as tornadoes, earthquakes, hurricanes, and flooding also stress the materials and structural elements of the built environment. In addition, criminals, vandals, and terrorists attack federal buildings, dams, bridges, tunnels, and other public and private facilities. Engineers and architects are beginning to systematically consider these threats during the design, construction, and retrofit phases of buildings and infrastructures and are recommending advanced research in new materials and techniques. Existing building codes and standards do not adequately address nor protect the infrastructure or the public from many of these emerging threats. The activities in Sandia National Laboratories' Architectural Surety{trademark} efforts take a risk management approach to enhancing the safety, security, and reliability of the constructed environment. The technologies and techniques developed during Sandia's 50 years as the nation's lead laboratory for nuclear weapons surety are now being applied to assessing and reducing the vulnerability of dams, to enhancing the safety and security of staff in foreign embassies, and assuring the reliability of other federal facilities. High consequence surety engineering and design brings together technological advancements, new material requirements, systems integration, and risk management to improve the safety, security, and reliability of the as-built environment. The thrust of this paper is the role that new materials can play in protecting the infrastructure. Retrofits of existing buildings, innovative approaches to the design and construction of new facilities, and the mitigation of consequences in the event of an unpreventable disaster are some of the areas that new construction materials can benefit the Architectural Surety{trademark} of the constructed environment.

More Details
4 Results
4 Results