Publications

60 Results
Skip to search filters

Sandia National Laboratories Strategic Context Workshop Series 2017: National Security Futures for Strategic Thinking

Keller, Elizabeth J.; Roll, Elizabeth R.; Aamir, Munaf S.; Bull, Diana L.; Deland, Sharon M.; Haddal, Chad H.; Passell, Howard D.; Foley, John T.; Harwell, Amber S.; Otis, Monique O.; Backus, George A.; Jones, Wendell J.; Bawden, Michael G.; Craft, Richard L.; Kistin, David J.; Martin, Jeffrey B.; McNicol, Bradley R.; Vannoni, Michael G.; Trost, Lawrence C.; Tsao, Jeffrey Y.; Weaver, Karla W.

In August 2017, Sandia convened five workshops to explore the future of advanced technologies and global peace and security through the lenses of deterrence, information, innovation, nonproliferation, and population and Earth systems.

More Details

Understanding Risks in the Global Civilian Nuclear Enterprise: Global Nuclear Assured Security Scenarios Workshop

Deland, Sharon M.; Keller, Elizabeth J.; Littlefield, Adriane L.; Osborn, Douglas M.

The purpose of the scenarios workshop held for the Civilian Nuclear component of the Global Nuclear Assured Security Mission Integration Initiative was to identify sources of risk in the global civilian nuclear enterprise. The risks identified are inadequately addressed through current technical measures, regulatory frameworks and institutions and should be considered for further research. The workshop participants also developed four high level scenarios describing different sequences of events that could result in radiological releases, widespread loss of electric power, and loss of public confidence in segments of the nuclear industry. The scenarios are intended for further analysis and as the basis for simulation exercises.

More Details

Buddy Tag CONOPS and Requirements

Brotz, Jay K.; Deland, Sharon M.

This document defines the concept of operations (CONOPS) and the requirements for the Buddy Tag, which is conceived and designed in collaboration between Sandia National Laboratories and Princeton University under the Department of State Key VerificationAssets Fund. The CONOPS describe how the tags are used to support verification of treaty limitations and is only defined to the extent necessary to support a tag design. The requirements define the necessary functions and desired non-functional features of the Buddy Tag at a high level

More Details

Report on a Zero-Knowledge Protocal Tabletop Exercise

Marleau, Peter M.; Brubaker, Erik B.; Deland, Sharon M.; Hilton, Nathan R.; McDaniel, Michael M.; Schroeppel, Richard C.; Seager, Kevin D.; Stoddard, Mary C.; MacArthur, Duncan M.

This report summarizes the discussion and conclusions reached during a table top exercise held at Sandia National Laboratories, Albuquerque on September 3, 2014 regarding a recently described approach for nuclear warhead verification based on the cryptographic concept of a zero-knowledge protocol (ZKP) presented in a recent paper authored by Glaser, Barak, and Goldston. A panel of Sandia National Laboratories researchers, whose expertise includes radiation instrumentation design and development, cryptography, and arms control verification implementation, jointly reviewed the paper and identified specific challenges to implementing the approach as well as some opportunities. It was noted that ZKP as used in cryptography is a useful model for the arms control verification problem, but the direct analogy to arms control breaks down quickly. The ZKP methodology for warhead verification fits within the general class of template-based verification techniques, where a reference measurement is used to confirm that a given object is like another object that has already been accepted as a warhead by some other means. This can be a powerful verification approach, but requires independent means to trust the authenticity of the reference warhead - a standard that may be difficult to achieve, which the ZKP authors do not directly address. Despite some technical challenges, the concept of last-minute selection of the pre-loads and equipment could be a valuable component of a verification regime.

More Details

The feasibility of mobile computing for on-site inspection

Deland, Sharon M.; Horak, Karl H.; Blair, Dianna S.

With over 5 billion cellphones in a world of 7 billion inhabitants, mobile phones are the most quickly adopted consumer technology in the history of the world. Miniaturized, power-efficient sensors, especially video-capable cameras, are becoming extremely widespread, especially when one factors in wearable technology like Apples Pebble, GoPro video systems, Google Glass, and lifeloggers. Tablet computers are becoming more common, lighter weight, and power-efficient. In this report the authors explore recent developments in mobile computing and their potential application to on-site inspection for arms control verification and treaty compliance determination. We examine how such technology can effectively be applied to current and potential future inspection regimes. Use cases are given for both host-escort and inspection teams. The results of field trials and their implications for on-site inspections are discussed.

More Details

Integrating nuclear weapons stockpile management and nuclear arms control objectives to enable significant stockpile reductions

Nonproliferation Review

Sanders, Lani M.; Deland, Sharon M.; Pregenzer, Arian L.

In his 2009 Prague speech and the 2010 Nuclear Posture Review, President Barack Obama committed the United States to take concrete steps toward nuclear disarmament while maintaining a safe, secure, and effective nuclear deterrent. There is an inherent tension between these two goals that is best addressed through improved integration of nuclear weapons objectives with nuclear arms control objectives. This article reviews historical examples of the interaction between the two sets of objectives, develops a framework for analyzing opportunities for future integration, and suggests specific ideas that could benefit the nuclear weapons enterprise as it undergoes transformation and that could make the future enterprise compatible with a variety of arms control futures. © 2010 Monterey Institute of International Studies, James Martin Center for Nonproliferation Studies.

More Details

Towards a mutually reinforcing future : opportunities to integrate nuclear weapons stewardship and arms control objectives

Sanders, Lani M.; Deland, Sharon M.; Pregenzer, Arian L.

2010 NPR and President Obama's 2009 Prague Speech highlighted two key objectives with an inherent underlying tension: (1) Moving towards a world free of nuclear weapons; and (2) Sustaining a safe, secure, and effective nuclear arsenal. Objective 1 depends, inter alia, upon reductions in stockpiles at home and abroad and maintaining stability. Objective 2 depends upon needed investments in modernization and life extension. Objectives being pursued predominantly in parallel by largely separate communities.

More Details

Approaches to integrating nuclear weapons stockpile management and arms control objectives

Deland, Sharon M.; Sanders, Lani M.; Pregenzer, Arian L.

Historically, U.S. arms control policy and the U.S. nuclear weapons enterprise have been reactive to each other, rather than interdependent and mutually reinforcing. One element of the divergence has been the long timescale necessary to plan and create substantive changes in the infrastructure vs. the inherent unpredictability of arms control outcomes. We explore several examples that illustrate this tension, some of the costs and implications associated with this reactive paradigm, and illustrate that, while the nuclear weapons enterprise has long considered the implications of arms control in sizing capacity of its missions, it has not substantively considered arms control in construction requirement for capabilities and products. Since previous arms control agreements have limited numbers and types of deployed systems, with delivery systems as the object of verification, this disconnect has not been forefront. However, as future agreements unfold, the warhead itself may become the treaty limited item and the object of verification. Such a scenario might offer both the need and the opportunity to integrate nuclear weapons and arms control requirements in unprecedented ways. This paper seeks to inspire new thinking on how such integration could be fostered and the extent to which it can facilitate significant reduction in nuclear stockpiles.

More Details

Pattern Discovery in Time-Ordered Data

Conrad, Gregory N.; Britanik, John M.; Deland, Sharon M.; Witcher, Christina J.; Deland, Sharon M.

This report describes the results of a Laboratory-Directed Research and Development project on techniques for pattern discovery in discrete event time series data. In this project, we explored two different aspects of the pattern matching/discovery problem. The first aspect studied was the use of Dynamic Time Warping for pattern matching in continuous data. In essence, DTW is a technique for aligning time series along the time axis to optimize the similarity measure. The second aspect studied was techniques for discovering patterns in discrete event data. We developed a pattern discovery tool based on adaptations of the A-priori and GSP (Generalized Sequential Pattern mining) algorithms. We then used the tool on three different application areas--unattended monitoring system data from a storage magazine, computer network intrusion detection, and analysis of robot training data.

More Details

Knowledge Generation

Brabson, John M.; Deland, Sharon M.; Deland, Sharon M.

Unattended monitoring systems are being studied as a means of reducing both the cost and intrusiveness of present nuclear safeguards approaches. Such systems present the classic information overload problem to anyone trying to interpret the resulting data not only because of the sheer quantity of data but also because of the problems inherent in trying to correlate information from more than one source. As a consequence, analysis efforts to date have mostly concentrated on checking thresholds or diagnosing failures. Clearly more sophisticated analysis techniques are required to enable automated verification of expected activities level concepts in order to make automated judgments about safety, sensor system integrity, sensor data quality, diversion, and accountancy.

More Details

A design methodology for unattended monitoring systems

Deland, Sharon M.; Deland, Sharon M.

The authors presented a high-level methodology for the design of unattended monitoring systems, focusing on a system to detect diversion of nuclear materials from a storage facility. The methodology is composed of seven, interrelated analyses: Facility Analysis, Vulnerability Analysis, Threat Assessment, Scenario Assessment, Design Analysis, Conceptual Design, and Performance Assessment. The design of the monitoring system is iteratively improved until it meets a set of pre-established performance criteria. The methodology presented here is based on other, well-established system analysis methodologies and hence they believe it can be adapted to other verification or compliance applications. In order to make this approach more generic, however, there needs to be more work on techniques for establishing evaluation criteria and associated performance metrics. They found that defining general-purpose evaluation criteria for verifying compliance with international agreements was a significant undertaking in itself. They finally focused on diversion of nuclear material in order to simplify the problem so that they could work out an overall approach for the design methodology. However, general guidelines for the development of evaluation criteria are critical for a general-purpose methodology. A poor choice in evaluation criteria could result in a monitoring system design that solves the wrong problem.

More Details
60 Results
60 Results