Publications

7 Results
Skip to search filters

Linear actuation using milligram quantities of CL-20 and TAGDNAT

Propellants, Explosives, Pyrotechnics

Tappan, Alexander S.; Basiliere, Marc; Ball, J.P.; Snedigar, Shane; Fischer, Gary J.; Salton, Jonathan R.

There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeterdiameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and to select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10, 12- hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3' dinitroazotriazolate) (TAGDNAT). © 2010 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

More Details

Evaluation of aluminum participation in the development of reactive waves in shock compressed HMX

Proceedings of the 13th International Detonation Symposium, IDS 2006

Pahl, Robert J.; Trott, Wayne T.; Castaneda, Jaime N.; Marley, Stephen K.; Snedigar, Shane

Nanometric aluminum (123nm, spherical) was mixed with two different sieve-cut sizes of HMX (106-150 μm and 212-300 μm), and a series of gas gun tests were conducted to compare reactive wave development in pure HMX to that of aluminized HMX. In the absence of added metal, 4-mm-thick, low-density (68% of theoretical maximum density) pressings of the 106-150 μm HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and meso-scale spatial fluctuations. Similar pressings of Al/HMX containing 10% aluminum (by mass) show an initial suppression of the usual wave growth seen in HMX samples. The suppression is then followed by an induction period where it is hypothesized that a phase change in the aluminum may occur. Data from VISAR, line-ORVIS, and 2-color pyrometry are given and discussed, and numerical modeling of inert sucrose is used to aid the explanation of the resulting data.

More Details
7 Results
7 Results