The harmonized automatic relay mitigation of nefarious intentional events (HARMONIE) special protection scheme (SPS) was developed to provide adaptive, cyber-physical response to unpredictable disturbances in the electric grid. The HARMONIE-SPS methodology includes a machine learning classification framework that analyzes real time cyber-physical data and determines if the system is in normal conditions, cyber disturbance, physical disturbance, or cyber-physical disturbance. This classification then informs response, if needed and/or suitable, and included cyber-physical corrective actions. Beyond standard power system mitigations, a few novel approaches were developed that included a consensus algorithm-based relay voting scheme, an automated power system triggering condition and corrective action pairing algorithm, and a cyber traffic routing optimization algorithm. Both the classification and response techniques were tested within a newly integrated emulation environment composed of a real-time digital simulator (RTDS) and SCEPTRE™. This report details the HARMONIE-SPS methodology, highlighting both the classification and response techniques, and the subsequent testing results from the emulation environment.
The electric grid has undergone rapid, revolutionary changes in recent years; from the addition of advanced smart technologies to the growing penetration of distributed energy resources (DERs) to increased interconnectivity and communications. However, these added communications, access interfaces, and third-party software to enable autonomous control schemes and interconnectivity also expand the attack surface of the grid. To address the gap of DER cybersecurity and secure the grid-edge to motivate a holistic, defense-in-depth approach, a proactive intrusion detection and mitigation system (PIDMS) device was developed to secure PV smart inverter communications. The PIDMS was developed as a distributed, flexible bump-in-the-wire (BITW) solution for protecting PV smart inverter communications. Both cyber (network traffic) and physical (power system measurements) are processed using network intrusion monitoring tools and custom machinelearning algorithms for deep packet analysis and cyber-physical event correlation. The PIDMS not only detects abnormal events but also deploys mitigations to limit or eliminate system impact; the PIDMS communicates with peer PIDMSs at different locations using the MQTT protocol for increased situational awareness and alerting. The details of the PIDMS methodology and prototype development are detailed in this report as well as the evaluation results within a cyber-physical emulation environment and subsequent industry feedback.
Distributed controllers play a prominent role in electric power grid operation. The coordinated failure or malfunction of these controllers is a serious threat, where the resulting mechanisms and consequences are not yet well-known and planned against. If certain controllers are maliciously compromised by an adversary, they can be manipulated to drive the system to an unsafe state. The authors present a strategy for distributed controller defence (SDCD) for improved grid tolerance under conditions of distributed controller compromise. The work of the authors’ first formalises the roles that distributed controllers play and their control support groups using controllability analysis techniques. With these formally defined roles and groups, the authors then present defence strategies for maintaining or regaining system control during such an attack. A general control response framework is presented here for the compromise or failure of distributed controllers using the remaining, operational set. The SDCD approach is successfully demonstrated with a 7-bus system and the IEEE 118-bus system for single and coordinated distributed controller compromise; the results indicate that SDCD is able to significantly reduce system stress and mitigate compromise consequences.
The electric grid is becoming increasingly cyber-physical with the addition of smart technologies, new communication interfaces, and automated grid-support functions. Because of this, it is no longer sufficient to only study the physical system dynamics, but the cyber system must also be monitored as well to examine cyber-physical interactions and effects on the overall system. To address this gap for both operational and security needs, cyber-physical situational awareness is needed to monitor the system to detect any faults or malicious activity. Techniques and models to understand the physical system (the power system operation) exist, but methods to study the cyber system are needed, which can assist in understanding how the network traffic and changes to network conditions affect applications such as data analysis, intrusion detection systems (IDS), and anomaly detection. In this paper, we examine and develop models of data flows in communication networks of cyber-physical systems (CPSs) and explore how network calculus can be utilized to develop those models for CPSs, with a focus on anomaly and intrusion detection. This provides a foundation for methods to examine how changes to behavior in the CPS can be modeled and for investigating cyber effects in CPSs in anomaly detection applications.
Traditional protective relay voting schemes utilize simple logic to achieve confidence in relay trip actions. However, the smart grid is rapidly evolving and there are new needs for a next-generation relay voting scheme. In such new schemes, aspects such as inter-relay relationships and out-of-band data can be included. In this work, we explore the use of consensus algorithms and how they can be utilized for groups of relays to vote on system protection actions and also reach consensus on the values of variables in the system. A proposed design is explored with a simple case study with two different scenarios, including simulation in PowerWorld Simulator, to demonstrate the consensus algorithm benefits and future directions are discussed.
The electric grid is rapidly being modernized with novel technologies, adaptive and automated grid-support functions, and added connectivity with internet-based communications and remote interfaces. These advancements render the grid increasingly 'smart' and cyber-physical, but also broaden the vulnerability landscape and potential for malicious, cascading disturbances. The grid must be properly defended with security mechanisms such as intrusion detection systems (IDSs), but these tools must account for power system behavior as well as network traffic to be effective. In this paper, we present a cyber-physical IDS, the proactive intrusion detection and mitigation system (PIDMS), that analyzes both cyber and physical data streams in parallel, detects intrusion, and deploys proactive response. We demonstrate the PIDMS with an exemplar case study exploring a packet replay attack scenario focused on photovoltaic inverter communications; the scenario is tested with an emulated, cyber-physical grid environment with hardware-in-the-loop inverters.
Recent trends in the growth of distributed energy resources (DER) in the electric grid and newfound malware frameworks that target internet of things (IoT) devices is driving an urgent need for more reliable and effective methods for intrusion detection and prevention. Cybersecurity intrusion detection systems (IDSs) are responsible for detecting threats by monitoring and analyzing network data, which can originate either from networking equipment or end-devices. Creating intrusion detection systems for PV/DER networks is a challenging undertaking because of the diversity of the attack types and intermittency and variability in the data. Distinguishing malicious events from other sources of anomalies or system faults is particularly difficult. New approaches are needed that not only sense anomalies in the power system but also determine causational factors for the detected events. In this report, a range of IDS approaches were summarized along with their pros and cons. Using the review of IDS approaches and subsequent gap analysis for application to DER systems, a preliminary hybrid IDS approach to protect PV/DER communications is formed in the conclusion of this report to inform ongoing and future research regarding the cybersecurity and resilience enhancement of DER systems.
Networked microgrids are clusters of geographically-close, islanded microgrids that can function as a single, aggregate island. This flexibility enables customer-level resilience and reliability improvements during extreme event outages and also reduces utility costs during normal grid operations. To achieve this cohesive operation, microgrid controllers and external connections (including advanced communication protocols, protocol translators, and/or internet connection) are needed. However, these advancements also increase the vulnerability landscape of networked microgrids, and significant consequences could arise during networked operation, increasing cascading impact. To address these issues, this report seeks to understand the unique components, functions, and communications within networked microgrids and what cybersecurity solutions can be implemented and what solutions need to be developed. A literature review of microgrid cybersecurity research is provided and a gap analysis of what is additionally needed for securing networked microgrids is performed. Relevant cyber hygiene and best practices to implement are provided, as well as ideas on how cybersecurity can be integrated into networked microgrid design. Lastly, future directions of networked microgrid cybersecurity R&D are provided to inform next steps.
To combat dynamic, cyber-physical disturbances in the electric grid, online and adaptive remedial action schemes (RASs) are needed to achieve fast and effective response. However, a major challenge lies in reducing the computational burden of analyses needed to inform selection of appropriate controls. This paper proposes the use of a role and interaction discovery (RID) algorithm that leverages control sensitivities to gain insight into the controller roles and support groups. Using these results, a procedure is developed to reduce the control search space to reduce computation time while achieving effective control response. A case study is presented that considers corrective line switching to mitigate geomagnetically induced current (GIC) -saturated reactive power losses in a 20-bus test system. Results demonstrated both significant reduction of both the control search space and reactive power losses using the RID approach.
The constantly evolving nature of the grid is compelling the design process of Remedial Action Schemes (RAS) to keep up with the changes. This document proposes a flexible and computationally efficient approach to automatically determine RAS corrective actions that alleviate line overloading violations. Statistical and functional characteristics summarized from RAS implemented in real power systems are used to guide the design parameters. This report also leverages sensitivity-based techniques to determine corrective actions for specific contingencies quickly without repeated numerical simulations. Finally, future directions for implementing this approach for a fully automated, online RAS are discussed.
The penetration of Internet-of-Things (IoT) devices in the electric grid is growing at a rapid pace; from smart meters at residential homes to distributed energy resource (DER) system technologies such as smart inverters, various devices are being integrated into the grid with added connectivity and communications. Furthermore, with these increased capabilities, automated grid-support functions, demand response, and advanced communication-assisted control schemes are being implemented to improve the operation of the grid. These advancements render our power systems increasingly cyber-physical. It is no longer sufficient to only focus on the physical interactions, especially when implementing cybersecurity mechanisms such as intrusion detection systems (IDSs) and mitigation schemes that need to access both cyber and physical data. This new landscape necessitates novel methods and technologies to successfully interact and understand the overall cyber-physical system. Specifically, this paper will investigate the need and definition of cyber-physical observability for the grid.
Reducing the risk of cyber-attacks that affect the confidentiality, integrity, and availability of distributed Photovoltaic (PV) inverters requires the implementation of an Intrusion Detection System (IDS) at the grid-edge. Often, IDSs use signature or behavior-based analytics to identify potentially harmful anomalies. In this work, the two approaches are deployed and tested on a small, single-board computer; the computer is setup to monitor and detect malevolent traffic in-between an aggregator and a single PV inverter. The Snort, signature-based, analysis tool detected three of the five attack scenarios. The behavior-based analysis, which used an Adaptive Resonance Theory Artificial Neural Network, successfully identified four out of the five attacks. Each of the approaches ran on the single-board computer and decreased the chances of an undetected breach in the PV inverters control system.
This document will detail a field demonstration test procedure for the Module OT device developed for the joint NREL-SNL DOE CEDS project titled "Modular Security Apparatus for Managing Distributed Cryptography for Command & Control Messages on Operational Technology (OT) Networks." The aim of this document is to create the testing and evaluation procedure for field demonstration of the device; this includes primarily functional testing and implementation testing at Public Service Company of New Mexico's (PNM's) Prosperity solar site environment. Specifically, the Module OT devices will be integrated into the Prosperity solar site system; traffic will be encrypted between several points of interest at the site (e.g., inverter micrologger and switch). The tests described in this document will be performed to assess the impact and effectiveness of the encryption capabilities provided by the Module OT device.
This document will detail a test procedure, involving bench and emulation testing, for the Module OT device developed for the joint NREL-SNL DOE CEDS project titled "Modular Security Apparatus for Managing Distributed Cryptography for Command & Control Messages on Operational Technology (OT) Networks." The aim of this document is to create the testing and evaluation protocol for the module for lab-level testing; this includes checklists and experiments for information gathering, functional testing, cryptographic implementation, public key infrastructure, key exchange/authentication, encryption, and implementation testing in the emulation environment.
Energy resilience has emerged as a national security priority over the past fifteen years. Recent research efforts have aimed to develop metrics and analysis methods for energy resilience, but most of those efforts have focused on extreme weather and other natural hazards as the threat of interest. This paper introduces a novel set of resilience metrics and exemplifies how they can be applied to analyze resilience for growing concerns about cyber threats. The metrics are formally described with mathematical equations and demonstrated in a case study that evaluates the resilience benefits of a new moving target defense technology.
Control systems for critical infrastructure are becoming increasingly interconnected while cyber threats against critical infrastructure are becoming more sophisticated and difficult to defend against. Historically, cyber security has emphasized building defenses to prevent loss of confidentiality, integrity, and availability in digital information and systems, but in recent years cyber attacks have demonstrated that no system is impenetrable and that control system operation may be detrimentally impacted. Cyber resilience has emerged as a complementary priority that seeks to ensure that digital systems can maintain essential performance levels, even while capabilities are degraded by a cyber attack. This paper examines how cyber security and cyber resilience may be measured and quantified in a control system environment. Load Frequency Control is used as an illustrative example to demonstrate how cyber attacks may be represented within mathematical models of control systems, to demonstrate how these events may be quantitatively measured in terms of cyber security or cyber resilience, and the differences and similarities between the two mindsets. These results demonstrate how various metrics are applied, the extent of their usability, and how it is important to analyze cyber-physical systems in a comprehensive manner that accounts for all the various parts of the system.