Single-shot Soot Particle Sizing in Turbulent Flames using Ultra-High-Speed Imaging
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Optics Letters
Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.
Applied Energy
Ducted fuel injection is a strategy that can be used to enhance the fuel/charge-gas mixing within the combustion chamber of a direct-injection compression-ignition engine. The concept involves injecting the fuel through a small tube within the combustion chamber to make the most fuel-rich regions of the micture in the autoignition zone leaner relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). This study is a follow-on to initial proof-of-concept experiments that also were conducted in a constant-volume combustion vessel. While the initial natural luminosity imaging experiments demonstrated that ducted fuel injection lowers soot incandescence dramatically, this study adds a more quantitative diffuse back-illumination diagnostic to measure soot mass, as well as investigates the effects on performance of varying duct geometry (axial gap, length, diameter, and inlet and outlet shapes), ambient density, and charge-gas dilution level. The result is that ducted fuel injection is further proven to be effective at lowering soot by 35–100% across a wide range of operating conditions and geometries, and guidance is offered on geometric parameters that are most important for improving performance and facilitating packaging for engine applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion and Flame
Soot formation in pyrolyzing sprays of n-dodecane is visualized and quantified in a high-pressure, high-temperature, constant-volume spray chamber at 38 bar, 76 bar, and 114 bar. Sprays of n-dodecane are injected at 500 bar from a single-hole, 186-µm orifice diameter fuel injector. We quantify the temporal evolution of the soot optical thickness and the total soot mass formed in the pyrolyzing sprays using a high-speed extinction imaging diagnostic. The vessel ambient temperature and pressure are varied independently to identify the soot onset temperature for n-dodecane pyrolysis. Linear extrapolation of the maximum soot formation rates as a function of ambient temperature reveals a soot onset temperature near 1450 K. The onset temperature determined here for n-dodecane is within 50 K of those previously measured along the centerline of atmospheric pressure coflow diffusion flames for smaller alkane fuels.
International Journal of Engine Research
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel-air mixing. However, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. The effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Energy
Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). The results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.
Proceedings of the Combustion Institute
A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The combined analysis established a conceptual model for turbulent ignition in high-pressure spray flames which is based on a set of identified characteristic time scales. The suddenly forming steep gradients from successful high-temperature ignition initiate the propagation of a turbulent flame. It rapidly ignites the entire spray head on time scales which are generally significantly smaller than the corresponding cool flame wave time scales.
Abstract not provided.
2016 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2016
Soot formation in pyrolyzing sprays of n-dodecane is visualized and quantified in a high-prebure, high-Temperature, constant-volume spray chamber at prebures relevant to modern comprebion ignition engines. Sprays of n-dodecane are injected at 500 bar from a single-hole, 186-μm orifice diameter, diesel injector belonging to the family of Engine Combustion Network (ECN) Spray D injectors. We quantify the temporal evolution of the total soot mab formed in the pyrolyzing sprays using a high-speed extinction imaging diagnostic. The ambient temperature and prebure of the nearly quiescent flow into which the sprays are injected are varied independently to identify a soot "onset" temperature for n-dodecane pyrolysis and to explore potential prebure dependencies of this limit. Radiation corrected temperatures measured at three axial locations near the radial boundary of the penetrating spray using a fine-wire Type-R thermocouple provide a relation between the bulk temperature measured by a prebure transducer and the core temperature driving soot formation. This relation is used to determine the soot onset temperature. The timeresolved total soot mab is further evaluated to determine prebure dependencies on the rate of soot formation.
Combustion and Flame
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier-Stokes (RANS) predictions. The LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. However, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.
SAE International Journal of Engines
For next-generation engines that operate using low-temperature gasoline combustion (LTGC) modes, a major issue remains poor combustion stability at low-loads. Negative valve overlap (NVO) enables enhanced main combustion control through modified valve timings to retain combustion residuals along with a small fuel injection that partially reacts during the recompression. While the thermal effects of NVO fueling on main combustion are well understood, the chemical effects of NVO reactions are less certain, especially oxygen-deficient reactions where fuel pyrolysis dominates. To better understand NVO period chemistry details, comprehensive speciation of engine samples collected at the end of the NVO cycle was performed by photoionization mass spectroscopy (PIMS) using synchrotron generated vacuum-ultraviolet light. Two operating conditions were explored: 1) a fuel lean condition with a short NVO fuel injection and a relatively high amount of excess oxygen in the NVO cycle (7%), and 2) a fuel-rich condition with a longer NVO fuel injection and low amount of NVO-cycle excess oxygen (4%). Samples were collected by a custom dump-valve apparatus from a direct injection, single-cylinder, automotive research engine operating under low-load LTGC and fueled by either isooctane or an 88-octane research certification gasoline. Samples were stored in heated stainless steel cylinders and transported to the Lawrence Berkeley National Laboratory Advanced Light Source for analysis using a Sandia National Laboratories flame sampling apparatus. For all isooctane fueled conditions, NVO cycle sample speciation from the PIMS measurements agreed well with previously reported GC sample measurements if the sum total of all isomer constituents from the PIMS measurements were considered. PIMS data, however, provides richer speciation information that is useful for validation of computational modeling approaches. The PIMS data also revealed that certain species for the GC diagnostic were either misidentified during the calibration process or not identified at all. Examples of unidentified species include several classes of oxygenates (e.g., ketenes, aldehydes, and simple alcohols) and simple aromatics (e.g., benzene and toluene). For the gasoline fueled NVO cycles, performance characteristics were well matched to corresponding isooctane fueled NVO cycles. However, significant PIMS cross-talk from a wide range of gasoline components restricted the sampling analysis to a handful of species. Nonetheless, it was confirmed that for fuel-lean NVO operation there was a comparable increase in acetylene with NVO injection timing retard that is attributed to the prevalence of locally-rich, piston-surface pool fires caused by fuel spray impingement.
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.
Abstract not provided.
SAE International Journal of Engines
We investigate the mixing, penetration, and ignition characteristics of high-pressure n-dodecane sprays having a split injection schedule (0.5/0.5 dwell/0.5 ms) in a pre-burn combustion vessel at ambient temperatures of 750 K, 800 K and 900 K. High-speed imaging techniques provide a time-resolved measure of vapor penetration and the timing and progression of the first- and second-stage ignition events. Simultaneous single-shot planar laser-induced fluorescence (PLIF) imaging identifies the timing and location where formaldehyde (CH2O) is produced from first-stage ignition and consumed following second-stage ignition. At the 900-K condition, the second injection penetrates into high-temperature combustion products remaining in the near-nozzle region from the first injection. Consequently, the ignition delay for the second injection is shorter than that of the first injection (by a factor of two) and the second injection ignites at a more upstream location near the liquid length. At the 750 K and 800 K conditions, high-temperature ignition does not occur in the near-nozzle region after the end of the first injection, though formaldehyde remains from first-stage reactions. Under these conditions, the second injection penetrates into cool-flame products that are slightly elevated in temperature (∼100 K) relative to the ambient. This modest temperature increase and the availability of reactive cool-flame products reduces the first- and second-stage ignition delay of the second injection by a factor of approximately two relative to the first injection. At the 750-K ambient condition, high-temperature ignition of the first injection does not occur until the second injection enriches the very fuel-lean downstream regions.
SAE International Journal of Engines
The ignition and flame stabilization characteristics of two synthetic fuels, having significantly different cetane numbers, are investigated in a constant volume combustion vessel over a range of ambient conditions representative of a compression ignition engine operating at variable loads. The synthetic fuel with a cetane number of 63 (S-1) is characterized by ignition delays that are only moderately longer than n-dodecane (cetane number of 87) over a range of ambient conditions. By comparison, the synthetic fuel with a cetane number of 17 (S-2) requires temperatures approximately 300 K higher to achieve the same ignition delays. The much different ignition characteristics and operating temperature range present a scenario where the lift-off stabilization may be substantially different. At temperatures below 1000 K, the S-2 fuel undergoes a long transient stabilization phase during which the lift-off location moves as much as 15 mm upstream (i.e., toward the injector orifice) after the ignition of the first flame kernel. This behavior is much different than S-1, n-dodecane, or with conventional diesel, in which past research shows that the lift-off location stabilizes very close to the ignition location shortly after the premixed burn. The longer ignition delays for S-2 frequently result in fuel-lean mixtures at the ignition location where the spray becomes over-mixed (i.e., too fuel-lean) and the high-temperature ignition event is noticeably less robust (i.e., smaller and less intense ignition kernels) as observed by high-speed chemiluminescence imaging. High-speed chemiluminescence imaging and pressure measurements show strong evidence of cool-flame (i.e., first-stage or low-temperature) reactions prior to high-temperature ignition for S-1 while they are less evident for S-2.
SAE Technical Papers
The mixing field of sprays injected into high temperature and pressure environments has been observed to be tightly connected to spreading angle, therefore linking vaporization and combustion processes to the angular dispersion of the spray. Visualization of the Engine Combustion Network three-hole, Spray B diesel injector shows substantial variation in near-field spreading angle with respect to time compared to past measurements of the single-hole, Spray A injector. The source of these variations originating inside the nozzle, and the implications on mixing, evaporation, and combustion of the diesel plume, need to be understood. In this study, we characterize the ECN-target plume for a Spray B injector (Serial # 211201), which already benefits from extensive and detailed internal measurements of nozzle geometry and needle movement, while comparing to the single-hole Spray A with the same type of detailed geometry and understanding. We measure the spreading angle, liquid penetration, and vapor penetration with respect to time of the spray of interest using standardized diagnostics in a high-temperature, high-pressure capable optically accessible combustion chamber. High-speed Mie scattering and diffused back-illumination imaging (DBI) are applied for liquid penetration, and schlieren imaging, for vapor penetration. The measurements show that the near-field spreading angle is wide for the first 300 μs after the start of injection before dropping rapidly during a quasi-steady period and then increasing well before the end of injection. Changes in spreading angle are not coincident with needle motion throttling, suggesting more complicated internal flow transients. With DBI long-distance microscopy, a partially transparent region indicates that an intact liquid core at the nozzle exit occurs frequently in quasi-steady period, which is coincident with a narrow spreading angle. The liquid penetration measured by DBI is comparable to that of Mie-scattering using criteria and standardization already established by the ECN community for Spray A. The Spray B liquid and vapor penetration rates are slower than that of Spray A, showing responses connected to the transient spreading angle.
Proceedings of the Combustion Institute
We applied simultaneous schlieren and formaldehyde (CH2O) planar laser-induced fluorescence (PLIF) imaging to investigate the low- and high-temperature auto-ignition events in a high-pressure (60 bar) spray of n-dodecane. High-speed (150 kHz) schlieren imaging allowed visualization of the temporal progression of the fuel vapor penetration as well as the low- and high-temperature ignition events, while formaldehyde fluorescence was induced by a pulsed (7-ns), 355-nm planar laser sheet at a select time during the same injection. Fluorescence from polycyclic aromatic hydrocarbons (PAH) was also observed and was distinguished from formaldehyde PLIF both temporally and spatially. A characteristic feature previously recorded in schlieren images of similar flames, in which refractive index gradients significantly diminish, has been confirmed to be coincident with large formaldehyde fluorescence signal during low-temperature ignition. Low-temperature reactions initiate near the radial periphery of the spray on the injector side of the spray head. Formaldehyde persists on the injector side of the lift-off length and forms rapidly near the injector following the end of injection. The consumption of formaldehyde coincides with the position and timing of high-temperature ignition and low-density zones that are clearly evident in the schlieren imaging. After the end of injection, the formaldehyde that formed on the injector side of the lift-off length is consumed as a high-temperature ignition front propagates back toward the injector tip.
Proceedings of the Combustion Institute
We have combined experimental and theoretical approaches to gain new insight into the mechanisms of PAH growth and soot formation. The experimental approach involves aerosol-mass spectrometry in conjunction with vacuum-ultraviolet photoionization of volatile species vaporizing from particles sampled from an Ar-diluted C2H2/O2 counter-flow diffusion flame at nearly atmospheric pressure (700 Torr). We recorded aerosol mass spectra at different distances from the fuel outlet for fixed ionization energies and in a fixed position while tuning the photoionization energy. The mass spectra contain a large distribution of peaks, highlighting the importance of small building blocks and showing a variety of chemical species that extends beyond the traditional classification of PAHs based on thermodynamic stability. In addition, we performed stochastic simulations of PAH growth in the flame in order to provide better insight into the chemical composition of species associated with peaks in the measured mass spectra. These simulations were conducted using a stochastic nanoparticle simulator (SNAPS). Synthesis of experimental and simulated results showed that peaks in the observed mass spectra generally consisted of a mixture of PAH isomers. At m/z =154 and 202, for example, experiments and simulations suggested that additional isomers than biphenyl and pyrene are important. Furthermore, the results highlight the importance of odd-carbon numbered species and complex growth paths. The experimental results suggest that species of higher masses can build up concentration ahead of species of lower masses. Our experimental results show, for example, that the peak at m/z = 278 appears closer to the burner outlet than the peak at m/z = 202, i.e., suggesting that a single monotonic growth mechanism is not enough.
The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.
Abstract not provided.
Abstract not provided.
Journal of Visualized Experiments
Abstract not provided.
Abstract not provided.
Proceedings of the Combustion Institute
We have designed an opposed-flow flame system to investigate the chemical composition of non-premixed flames using in situ flame-sampling molecular-beam mass spectrometry with synchrotron-generated tunable vacuum-ultraviolet light as an ionization source. This paper provides details of the experimental apparatus, sampling method, and data-reduction procedures. To test the system, we have investigated the chemical composition of three low-pressure (30-50 Torr), non-premixed, opposed-flow acetylene( Ar)/O2(Ar) flames. We measured quantitative mole-fraction profiles as a function of the distance from the fuel outlet for the major species and several intermediates, including the methyl and propargyl radicals. We determined the temperature profiles of these flames by normalizing a sampling-instrument function to thermocouple measurements near the fuel outlet. A comparison of the experimental temperature and major species profiles with modeling results indicates that flame perturbations caused by the sampling probe are minimal. The observed agreement between experimental and modeled results, apparent for most combustion species, is similar to corresponding studies of premixed flames. © 2012 The Combustion Institute.
The Journal of Physical Chemistry Letters
Abstract not provided.
J. Phys. Chem. Lett.
Abstract not provided.
%22International Journal of Mass Spectrometry%22
Abstract not provided.