Conversion cathode materials are gaining interest for secondary batteries due to their high theoretical energy and power density. However, practical application as a secondary battery material is currently limited by practical issues such as poor cyclability. To better understand these materials, we have, for this study, developed a pseudo-two-dimensional model for conversion cathodes. We apply this model to FeS2 – a material that undergoes intercalation followed by conversion during discharge. The model is derived from the half-cell Doyle–Fuller–Newman model with additional loss terms added to reflect the converted shell resistance as the reaction progresses. We also account for polydisperse active material particles by incorporating a variable active surface area and effective particle radius. Using the model, we show that the leading loss mechanisms for FeS2 are associated with solid-state diffusion and electrical transport limitations through the converted shell material. The polydisperse simulations are also compared to a monodisperse system, and we show that polydispersity has very little effect on the intercalation behavior yet leads to capacity loss during the conversion reaction. Finally, we provide the code as an open-source Python Battery Mathematical Modeling (PyBaMM) model that can be used to identify performance limitations for other conversion cathode materials.
Cooper, Samuel J.; Roberts, Scott A.; Liu, Zhao L.; Winiarski, Bartlomiej W.
The mesostructure of porous electrodes used in lithium-ion batteries strongly influences cell performance. Accurate imaging of the distribution of phases in these electrodes would allow this relationship to be better understood through simulation. However, imaging the nanoscale features in these components is challenging. While scanning electron microscopy is able to achieve the required resolution, it has well established difficulties imaging porous media. This is because the flat imaging planes prepared using focused ion beam milling will intersect with the pores, which makes the images hard to interpret as the inside walls of the pores are observed. It is common to infiltrate porous media with resin prior to imaging to help resolve this issue, but both the nanoscale porosity and the chemical similarity of the resins to the battery materials undermine the utility of this approach for most electrodes. In this study, a technique is demonstrated which uses in situ infiltration of platinum to fill the pores and thus enhance their contrast during imaging. Reminiscent of the Japanese art of repairing cracked ceramics with precious metals, this technique is referred to as the kintsugi method. The images resulting from applying this technique to a conventional porous cathode are presented and then segmented using a multi-channel convolutional method. We show that while some cracks in active material particles were empty, others appear to be filled (perhaps with the carbon binder phase), which will have implications for the rate performance of the cell. Energy dispersive X-ray spectroscopy was used to validate the distribution of phases resulting from image analysis, which also suggested a graded distribution of the binder relative to the carbon additive. The equipment required to use the kintsugi method is commonly available in major research facilities and so we hope that this method will be rapidly adopted to improve the imaging of electrode materials and porous media in general.
Conversion cathodes represent a viable route to improve rechargeable Li+ battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS2/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix. Through the application of an external pressure, the loss is minimized by maintaining the conductive matrix. Further, we determine that polysulfide loss can be minimized by increasing the current density (>C/10), thus reducing the sulfur formation period. Analysis of the kinetics determines that the conversion reactions are rate-limiting, specifically the formation of metallic iron at rates above C/8. While focused on FeS2, our findings on the influence of pressure, electrolyte interaction, and kinetics are broadly applicable to other conversion cathode systems.
Electrode-scale heterogeneity can combine with complex electrochemical interactions to impede lithium-ion battery performance, particularly during fast charging. This study investigates the influence of electrode heterogeneity at different scales on the lithium-ion battery electrochemical performance under operational extremes. We employ image-based mesoscale simulation in conjunction with a three-dimensional electrochemical model to predict performance variability in 14 graphite electrode X-ray computed tomography data sets. Our analysis reveals that the tortuous anisotropy stemming from the variable particle morphology has a dominating influence on the overall cell performance. Cells with platelet morphology achieve lower capacity, higher heat generation rates, and severe plating under extreme fast charge conditions. On the contrary, the heterogeneity due to the active material clustering alone has minimal impact. Our work suggests that manufacturing electrodes with more homogeneous and isotropic particle morphology will improve electrochemical performance and improve safety, enabling electromobility.
Graphite electrodes in the lithium-ion battery exhibit various particle shapes, including spherical and platelet morphologies, which influence structural and electrochemical characteristics. It is well established that porous structures exhibit spatial heterogeneity, and the particle morphology can influence transport properties. The impact of the particle morphology on the heterogeneity and anisotropy of geometric and transport properties has not been previously studied. This study characterizes the spatial heterogeneities of 18 graphite electrodes at multiple length scales by calculating and comparing the structural anisotropy, geometric quantities, and transport properties (pore-scale tortuosity and electrical conductivity). We found that the particle morphology and structural anisotropy play an integral role in determining the spatial heterogeneity of directional tortuosity and its dependency on pore-scale heterogeneity. Our analysis reveals that the magnitude of in-plane and through-plane tortuosity difference influences the multiscale heterogeneity in graphite electrodes.
Li metal anodes are enticing for batteries due to high theoretical charge storage capacity, but commercialization is plagued by dendritic Li growth and short circuits when cycled at high currents. Applied pressure has been suggested to improve morphology, and therefore performance. We hypothesized that increasing pressure would suppress dendritic growth at high currents. To test this hypothesis, here, we extensively use cryogenic scanning electron microscopy to show that varying the applied pressure from 0.01 to 1 MPa has little impact on Li morphology after one deposition. We show that pressure improves Li density and preserves Li inventory after 50 cycles. However, contrary to our hypothesis, pressure exacerbates dendritic growth through the separator, promoting short circuits. Therefore, we suspect Li inventory is better preserved in cells cycled at high pressure only because the shorts carry a larger portion of the current, with less being carried by electrochemical reactions that slowly consume Li inventory.
Image-based simulation, the use of 3D images to calculate physical quantities, relies on image segmentation for geometry creation. However, this process introduces image segmentation uncertainty because different segmentation tools (both manual and machine-learning-based) will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be surprisingly nontrivial. We establish that bounding segmentation uncertainty can fail in these nontrivial situations. While our work does not eliminate segmentation uncertainty, it improves simulation credibility by making visible the previously unrecognized segmentation uncertainty plaguing image-based simulation.
The galvanostatic intermittent titration technique (GITT) is widely used to evaluate solid-state diffusion coefficients in electrochemical systems. However, the existing analysis methods for GITT data require numerous assumptions, and the derived diffusion coefficients typically are not independently validated. To investigate the validity of the assumptions and derived diffusion coefficients, we employ a direct-pulse fitting method for interpreting the GITT data that involves numerically fitting an electrochemical pulse and subsequent relaxation to a one-dimensional, single-particle, electrochemical model coupled with non-ideal transport to directly evaluate diffusion coefficients. Our non-ideal diffusion coefficients, which are extracted from GITT measurements of the intercalation regime of FeS2 and independently verified through discharge predictions, prove to be 2 orders of magnitude more accurate than ideal diffusion coefficients extracted using conventional methods. We further extend our model to a polydisperse set of particles to show the validity of a single-particle approach when the modeled radius is proportional to the total volume-to-surface-area ratio of the system.
Mishra, Lubhani; Subramaniam, Akshay; Jang, Taejin; Shah, Krishna; Uppaluri, Maitri; Roberts, Scott A.; Subramanian, Venkat R.
Electrochemical models at different scales and varying levels of complexity have been used in the literature to study the evolution of the anode surface in lithium metal batteries. This includes continuum, mesoscale (phase-field approaches), and multiscale models. In this paper, using a motivating example of a moving boundary model in one dimension, we show how battery models need proper formulation for mass conservation, especially when simulated over multiple charge and discharge cycles. The article concludes with some thoughts on mass conservation and proper formulation for multiscale models.
Mistry, Aashutosh; Franco, Alejandro A.; Cooper, Samuel J.; Roberts, Scott A.; Viswanathan, Venkatasubramanian
Electrochemical systems function via interconversion of electric charge and chemical species and represent promising technologies for our cleaner, more sustainable future. However, their development time is fundamentally limited by our ability to identify new materials and understand their electrochemical response. To shorten this time frame, we need to switch from the trial-and-error approach of finding useful materials to a more selective process by leveraging model predictions. Machine learning (ML) offers data-driven predictions and can be helpful. Herein we ask if ML can revolutionize the development cycle from decades to a few years. We outline the necessary characteristics of such ML implementations. Instead of enumerating various ML algorithms, we discuss scientific questions about the electrochemical systems to which ML can contribute.
Macrohomogeneous battery models are widely used to predict battery performance, necessarily relying on effective electrode properties, such as specific surface area, tortuosity, and electrical conductivity. While these properties are typically estimated using ideal effective medium theories, in practice they exhibit highly non-ideal behaviors arising from their complex mesostructures. In this paper, we computationally reconstruct electrodes from X-ray computed tomography of 16 nickel-manganese-cobalt-oxide electrodes, manufactured using various material recipes and calendering pressures. Due to imaging limitations, a synthetic conductive binder domain (CBD) consisting of binder and conductive carbon is added to the reconstructions using a binder bridge algorithm. Reconstructed particle surface areas are significantly smaller than standard approximations predicted, as the majority of the particle surface area is covered by CBD, affecting electrochemical reaction availability. Finite element effective property simulations are performed on 320 large electrode subdomains to analyze trends and heterogeneity across the electrodes. Significant anisotropy of up to 27% in tortuosity and 47% in effective conductivity is observed. Electrical conductivity increases up to 7.5× with particle lithiation. We compare the results to traditional Bruggeman approximations and offer improved alternatives for use in cellscale modeling, with Bruggeman exponents ranging from 1.62 to 1.72 rather than the theoretical value of 1.5. We also conclude that the CBD phase alone, rather than the entire solid phase, should be used to estimate effective electronic conductivity. This study provides insight into mesoscale transport phenomena and results in improved effective property approximations founded on realistic, image-based morphologies.