Publications

8 Results
Skip to search filters

CO2 laser welding fused silica

Knorovsky, Gerald A.; Reed, Scott T.

The feasibility of laser welding of fused silica (aka quartz) has been demonstrated recently by others. An application requiring hermetic sealing of a thin, pressure-bearing quartz diaphragm to a thicker frame led us to explore this technique. We found that laser welding techniques normally used for metallic parts caused scorching and uneven melting. Contrary to standard practices (near focus, high travel speed, high power density), successful welds in fused silica required a broad heat source applied over a large area under a slow rotation to gradually heat the glass through the annealing, softening and finally working temperatures. Furthermore, good mechanical contact between the parts to be joined played an even more important role in this process than in typical metallic joints. A 50 W CO2 laser with 4 f.l. ZnSe2 lens and rotary head was used to weld 0.425 OD, 0.006-0.010 thick, disks to 0.500 OD tubing with 0.125 walls. Several joint geometries and beam orientations were investigated. Temperature profiles were measured and compared to an FEM thermal model. We will discuss the effects of laser power, travel speed, number of passes, joint geometry and part thicknesses on achieving hermeticity and cosmetically-acceptable joints.

More Details

Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating

Rambo, Patrick K.; Schwarz, Jens S.; Smith, Ian C.; Ashley, Carol S.; Branson, Eric D.; Dunphy, Darren R.; Cook, Adam W.; Reed, Scott T.; Johnson, William Arthur.

In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

More Details

In-situ X-ray scattering study of continuous silica - Surfactant self-assembly during steady-state dip coating

Journal of Physical Chemistry B

Doshi, Dhaval D.; Gibaud, Alain; Liu, Nanguo; Sturmayr, Dietmar; Malanoski, Anthony P.; Dunphy, Darren R.; Chen, Hongji; Narayanan, Suresh; MacPhee, Andrew; Wang, Jin; Reed, Scott T.; Hurd, Alan J.; Van Swol, Frank; Brinker, C.J.

Inorganic mesoporous thin-films are important for applications such as membranes, sensors, low-dielectric-constant insulators (so-called low κ dielectrics), and fluidic devices. Over the past five years, several research groups have demonstrated the efficacy of using evaporation accompanying conventional coating operations such as spin- and dip-coating as an efficient means of driving the self-assembly of homogeneous solutions into highly ordered, oriented, mesostructured films. Understanding such evaporation-induced self-assembly (EISA) processes is of interest for both fundamental and technological reasons. Here, we use spatially resolved 2D grazing incidence X-ray scattering in combination with optical interferometry during steady-state dipcoating of surfactant-templated silica thin-films to structurally and compositionally characterize the EISA process. We report the evolution of a hexagonal (p6 mm) thin-film mesophase from a homogeneous precursor solution and its further structural development during drying and calcination. Monte Carlo simulations of water/ethanol/surfactant bulk phase behavior are used to investigate the role of ethanol in the self-assembly process, and we propose a mechanism to explain the observed dilation in unit cell dimensions during solvent evaporation.

More Details

Hierarchically structured functional porous silica and composite produced by evaporation-induced self-assembly

Microporous and Mesoporous Materials

Fan, Hongyou F.; Reed, Scott T.; Baer, Thomas A.; Schunk, Randy; P. López, Gabriel; Brinker, C.J.

Recently so-called soft lithography approaches [Angew. Chem. Int. Ed. 37 (1998) 550] have been combined with surfactant [Adv. Mater. 9 (1997) 811. Nature 390 (1997) 674] and particulate [Science 282 (1998) 2244] templating procedures to create oxides with multiple levels of structural order. But the materials thus formed have been limited primarily to oxides with no specific functionality, and the associated processing times have ranged from hours to days. Using self-assembling inks we have combined evaporation-induced (silica/surfactant) self-assembly [Adv. Mater. 11 (1999) 579] with rapid prototyping techniques like micro-pen lithography [Science 283 (1999) 661. Mat. Res. Soc. Symp. Proc. 542 (1999) 159], ink-jet printing [Adv. Mater. 11 (1999) 734, Mat. Sci. Eng. C5 (1998) 289], and dip coating on micro-contact printed substrates to form hierarchically organized structures in seconds. By co-condensation of tetrafunctional silanes (Si(OR)4) with tri-functional organosilanes ((RO)3SiR') [Chem. Commun. (1999) 1367. Chem. Commun. (1997) 1769, J. Am. Chem. Soc. 119 (1997) 4090] or bridged silsesquioxanes (RO)3Si-R'-Si(OR)3) or by inclusion of organic additives, we have selectively derivatized the silica framework with functional R' ligands or molecules. The rapid-prototyping procedures we describe are simple, employ readily available equipment, and provide a link between computer-aided design and self-assembled functional nanostructures. We expect that the ability to form arbitrary functional designs on arbitrary surfaces will be of practical importance for directly writing sensor arrays and fluidic or photonic systems. © 2001 Elsevier Science B.V. All rights reserved.

More Details

Rapid prototyping of patterned functional nanostructures

Nature

Fan, Hongyou; Lu, Yunfeng; Stump, Aaron; Reed, Scott T.; Baer, Thomas A.; Schunk, Randy; Perez-Luna, Victor; López, Gabriel P.; Brinker, C.J.

Living systems exhibit form and function on multiple length scales and at multiple locations. In order to mimic such natural structures, it is necessary to develop efficient strategies for assembling hierarchical materials. Conventional photolithography, although ubiquitous in the fabrication of microelectronics and microelectromechanical systems, is impractical for defining feature sizes below 0.1 micrometres and poorly suited to pattern chemical functionality. Recently, so-called 'soft' lithographic approaches have been combined with surfactant and particulate templating procedures to create materials with multiple levels of structural order. But the materials thus formed have been limited primarily to oxides with no specific functionality, and the associated processing times have ranged from hours to days. Here, using a self-assembling 'ink', we combine silica-surfactant self-assembly with three rapid printing procedures-pen lithography, ink-jet printing, and dip-coating of patterned self-assembled monolayers-to form functional, hierarchically organized structures in seconds. The rapid-prototyping procedures we describe are simple, employ readily available equipment, and provide a link between computer-aided design and self-assembled nanostructures. We expect that the ability to form arbitrary functional designs on arbitrary surfaces will be of practical importance for directly writing sensor arrays and fluidic or photonic systems.

More Details
8 Results
8 Results