A team at Sandia National Laboratories (SNL) recognized the growing need to maintain and organize the internal community of Techno - Economic Assessment analysts at the lab . To meet this need, an internal core team identified a working group of experienced, new, and future analysts to: 1) document TEA best practices; 2) identify existing resources at Sandia and elsewhere; and 3) identify gaps in our existing capabilities . Sandia has a long history of using techno - economic analyses to evaluate various technologies , including consideration of system resilience . Expanding our TEA capabilities will provide a rigorous basis for evaluating science, engineering and technology - oriented projects, allowing Sandia programs to quantify the impact of targeted research and development (R&D), and improving Sandia's competitiveness for external funding options . Developing this working group reaffirms the successful use of TEA and related techniques when evaluating the impact of R&D investments, proposed work, and internal approaches to leverage deep technical and robust, business - oriented insights . The main findings of this effort demonstrated the high - impact TEA has on future cost, adoption for applications and impact metric forecasting insights via key past exemplar applied techniques in a broad technology application space . Recommendations from this effort include maintaining and growing the best practices approaches when applying TEA, appreciating the tools (and their limits) from other national laboratories and the academic community, and finally a recognition that more proposals and R&D investment decision s locally at Sandia , and more broadly in the research community from funding agencies , require TEA approaches to justify and support well thought - out project planning.
The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.
Silica is ubiquitous in produced and industrial waters, and plays a major disruptive role in water recycle. Herein we have investigated the use of mixed oxides for the removal of silica from these waters, and their incorporation into a low cost and low energy water purification process. High selectivity hydrotalcite (HTC, (Mg6Al2(OH)16(CO3)•4H2O)), is combined in series with high surface area active alumina (AA, (Al2O3)) as the dissolved silica removal media. Batch test results indicated that combined HTC/AA is a more effective method for removing silica from industrial cooling tower wasters (CTW) than using HTC or AA separately. The silica uptake via ion exchange on the mixed oxides was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Furthermore, HTC/AA effectively removes silica from CTW even in the presence of large concentrations of competing anions, such as Cl-, NO3- HCO3-, CO32- and SO42-. Similar to batch tests, Single Path Flow Through (SPFT) tests with sequential HTC/AA column filtration has very high silica removal too. Technoeconomic Analysis (TEA) was simultaneously performed for cost comparisons to existing silica removal technologies.
Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.