Unconventional PDV applications: detecting plasma and radiation
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. These changes can diagnose extreme environments in a flexible, time-resolved manner.
Abstract not provided.
Abstract not provided.
Abstract not provided.
THRIVE (THRee Interferometer VElocimetry) is an analysis package for reducing three-phase interferometry measurements. Three-phase displacement interferometry measurements are the primary application of this program, although velocity interferometry is also supported. THRIVE uses a push-pull approach to transform measured signals to a pair of quadrature signals, from which fringe shift, target position, and target velocity are inferred. The program can analyze the signals in an ideal sense or compensate for non-ideal measurement conditions using ellipse characterization. The program can be run in any current version of MATLAB (release 2007a or later) or as a Windows XP executable.
Review of Scientific Instruments
A robust analysis method is presented for multiple-phase heterodyne velocimetry measurements. By combining information from three phase-shifted signals, it is possible to eliminate coherent intensity variations and incoherent light from the measurement. The three data signals are reduced to a pair of quadrature signals, allowing unambiguous calculation of target displacement. The analysis relies on a minimum number of adjustable parameters, and these parameters can be precisely determined from simple interferometer characterization. © 2007 American Institute of Physics.
Complementary gas-gun and electro-magnetic pulse tests conducted in Sandia's Dynamic Integrated Compression Experimental (DICE) Facility have, respectively, probed the behavior of electronic-grade Kovar samples under controlled impact and intermediate-strain-rate ICE (Isentropic Compression Experiment) loading. In all tests, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for conditions involving one-dimensional (i:e:, uniaxial strain) compression and release. Wave-profile data from the gas-gun impact experiments have been analyzed to assess the Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of shocked Kovar. The ICE wave-profile data have been interpreted to determine the locus of isentropic stress-strain states generated in Kovar for deformation rates substantially lower than those associated with a shock process. The impact and ICE results have been compared to examine the influence of loading rate on high-pressure strength.
Abstract not provided.
Abstract not provided.
Journal of Radiation Effects, Research and Engineering
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.