Publications

23 Results
Skip to search filters

Structure preserving reduced-order modeling of linear periodic time-varying systems

IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD

Mei, Ting M.; Thornquist, Heidi K.; Keiter, Eric R.; Hutchinson, Scott A.

Many subsystems encountered in communication systems can be modeled as linear periodic time-varyiing (LPTV) systems. In this paper, we present a novel structure preserving reduced-order modeling algorithm for LPTV systems. A key advance of our approach is that it preserves the periodic time-varying structure during the reduction process, thus resulting in reduced LPTV systems. Unlike prior LPTV model order reduction (MOR) techniques which recast the LPTV systems to artificial linear time-invariant (LTI) systems and apply LTI MOR techniques for reduction, our structure preserving algorithm uses a time-varying projection directly on the original LPTV systems. Our approach always produces a smaller system than the original system, which was not valid for previous LPTV MOR techniques. We validate the proposed technique with several circuit examples, demonstrating significant size reductions and excellent accuracy. © 2011 IEEE.

More Details

Xyce Parallel Electronic Simulator - Users' Guide Version 2.1

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.; Pawlowski, Roger P.; Fixel, Deborah A.; Schiek, Richard S.; Bogdan, Carolyn W.

This manual describes the use of theXyceParallel Electronic Simulator.Xycehasbeen designed as a SPICE-compatible, high-performance analog circuit simulator, andhas been written to support the simulation needs of the Sandia National Laboratorieselectrical designers. This development has focused on improving capability over thecurrent state-of-the-art in the following areas:%04Capability to solve extremely large circuit problems by supporting large-scale par-allel computing platforms (up to thousands of processors). Note that this includessupport for most popular parallel and serial computers.%04Improved performance for all numerical kernels (e.g., time integrator, nonlinearand linear solvers) through state-of-the-art algorithms and novel techniques.%04Device models which are specifically tailored to meet Sandia's needs, includingmany radiation-aware devices.3 XyceTMUsers' Guide%04Object-oriented code design and implementation using modern coding practicesthat ensure that theXyceParallel Electronic Simulator will be maintainable andextensible far into the future.Xyceis a parallel code in the most general sense of the phrase - a message passingparallel implementation - which allows it to run efficiently on the widest possible numberof computing platforms. These include serial, shared-memory and distributed-memoryparallel as well as heterogeneous platforms. Careful attention has been paid to thespecific nature of circuit-simulation problems to ensure that optimal parallel efficiencyis achieved as the number of processors grows.The development ofXyceprovides a platform for computational research and de-velopment aimed specifically at the needs of the Laboratory. WithXyce, Sandia hasan %22in-house%22 capability with which both new electrical (e.g., device model develop-ment) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms)research and development can be performed. As a result,Xyceis a unique electricalsimulation capability, designed to meet the unique needs of the laboratory.4 XyceTMUsers' GuideAcknowledgementsThe authors would like to acknowledge the entire Sandia National Laboratories HPEMS(High Performance Electrical Modeling and Simulation) team, including Steve Wix, CarolynBogdan, Regina Schells, Ken Marx, Steve Brandon and Bill Ballard, for their support onthis project. We also appreciate very much the work of Jim Emery, Becky Arnold and MikeWilliamson for the help in reviewing this document.Lastly, a very special thanks to Hue Lai for typesetting this document with LATEX.TrademarksThe information herein is subject to change without notice.Copyrightc 2002-2003 Sandia Corporation. All rights reserved.XyceTMElectronic Simulator andXyceTMtrademarks of Sandia Corporation.Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence DesignSystems, Inc.Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of SiliconGraphics, Inc.Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation.HP and Alpha are registered trademarks of Hewlett-Packard company.Amtec and TecPlot are trademarks of Amtec Engineering, Inc.Xyce's expression library is based on that inside Spice 3F5 developed by the EECS De-partment at the University of California.All other trademarks are property of their respective owners.ContactsBug Reportshttp://tvrusso.sandia.gov/bugzillaEmailxyce-support%40sandia.govWorld Wide Webhttp://www.cs.sandia.gov/xyce5 XyceTMUsers' GuideThis page is left intentionally blank6

More Details

Robust, stable time-domain methods for solving MPDEs of fast/slow systems

Coffey, Todd S.; Hutchinson, Scott A.

In this paper, we explore the stability properties of time-domain numerical methods for multitime partial differential equations (MPDEs) in detail. We demonstrate that simple techniques for numerical discretization can lead easily to instability. By investigating the underlying eigenstructure of several discretization techniques along different artificial time scales, we show that not all combinations of techniques are stable. We identify choices of discretization method and step size, along fast and slow time scales, that lead to robust, stable time-domain integration methods for the MPDE. One of our results is that applying overstable methods along one time-scale can compensate for unstable discretization along others. Our novel integration schemes bring robustness to time-domain MPDE solution methods, as we demonstrate with examples.

More Details

Xyce Parallel Electronic Simulator : users' guide, version 2.0

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.; Pawlowski, Roger P.; Wix, Steven D.; Fixel, Deborah A.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.

More Details

Xyce Parallel Electronic Simulator : reference guide, version 2.0

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.; Pawlowski, Roger P.; Fixel, Deborah A.; Wix, Steven D.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

More Details

Xyce parallel electronic simulator design : mathematical formulation, version 2.0

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.

This document is intended to contain a detailed description of the mathematical formulation of Xyce, a massively parallel SPICE-style circuit simulator developed at Sandia National Laboratories. The target audience of this document are people in the role of 'service provider'. An example of such a person would be a linear solver expert who is spending a small fraction of his time developing solver algorithms for Xyce. Such a person probably is not an expert in circuit simulation, and would benefit from an description of the equations solved by Xyce. In this document, modified nodal analysis (MNA) is described in detail, with a number of examples. Issues that are unique to circuit simulation, such as voltage limiting, are also described in detail.

More Details

The two-level Newton method and its application to electronic simulation

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.

Coupling between transient simulation codes of different fidelity can often be performed at the nonlinear solver level, if the time scales of the two codes are similar. A good example is electrical mixed-mode simulation, in which an analog circuit simulator is coupled to a PDE-based semiconductor device simulator. Semiconductor simulation problems, such as single-event upset (SEU), often require the fidelity of a mesh-based device simulator but are only meaningful when dynamically coupled with an external circuit. For such problems a mixed-level simulator is desirable, but the two types of simulation generally have different (somewhat conflicting) numerical requirements. To address these considerations, we have investigated variations of the two-level Newton algorithm, which preserves tight coupling between the circuit and the PDE device, while optimizing the numerics for both. The research was done within Xyce, a massively parallel electronic simulator under development at Sandia National Laboratories.

More Details

Xyce release and distribution management : version 1.2

Hutchinson, Scott A.; Williamson, C.M.; Hutchinson, Scott A.

This document presents a high-level description of the Xyce {trademark} Parallel Electronic Simulator Release and Distribution Management Process. The purpose of this process is to standardize the manner in which all Xyce software products progress toward release and how releases are made available to customers. Rigorous Release Management will assure that Xyce releases are created in such a way that the elements comprising the release are traceable and the release itself is reproducible. Distribution Management describes what is to be done with a Xyce release that is eligible for distribution.

More Details

Computational Algorithms for Device-Circuit Coupling

Keiter, Eric R.; Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Rankin, Eric R.; Russo, Thomas V.; Waters, Lon J.

Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits. Similarly, device-scale simulation tools (e.g., DaVinci) are commonly used in the design of individual semiconductor components. Some problems, such as single-event upset (SEU), require the fidelity of a mesh-based device simulator but are only meaningful when dynamically coupled with an external circuit. For such problems a mixed-level simulator is desirable, but the two types of simulation generally have different (sometimes conflicting) numerical requirements. To address these considerations, we have investigated variations of the two-level Newton algorithm, which preserves tight coupling between the circuit and the partial differential equations (PDE) device, while optimizing the numerics for both.

More Details

Xyce Parallel Electronic Simulator - User's Guide, Version 1.0

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Waters, Lon J.; Russo, Thomas V.; Rankin, Eric R.; Wix, Steven D.

This manual describes the use of the Xyce Parallel Electronic Simulator code for simulating electrical circuits at a variety of abstraction levels. The Xyce Parallel Electronic Simulator has been written to support,in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on improving the capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). (4) Object-oriented code design and implementation using modern coding-practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows. Another feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce Parallel Electronic Simulator is designed to support a variety of device model inputs. These input formats include standard analytical models, behavioral models and look-up tables. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important contribution Xyce makes to the designers at Sandia National Laboratories is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an ''in-house''capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Furthermore, these capabilities will then be migrated to the end users.

More Details

The Xyce Parallel Electronic Simulator - An Overview

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Watts, Herman A.; Waters, Lon J.; Schells, Regina L.; Wix, Steven D.

The Xyce{trademark} Parallel Electronic Simulator has been written to support the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on providing the capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). In addition, they are providing improved performance for numerical kernels using state-of-the-art algorithms, support for modeling circuit phenomena at a variety of abstraction levels and using object-oriented and modern coding-practices that ensure the code will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows.

More Details
23 Results
23 Results