Network modeling for satellite plug and play reconfigurable optical networks (SPA-O)
Abstract not provided.
Abstract not provided.
This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.
We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.