Computational Fluid Dynamics and Heat Transfer Modeling of a Dimpled Heat Exchanger
Multiphysics and analytical calculations were conducted for a heat exchanger with passive, natural circulation flow. A glycol/water working fluid convects the heat to a dimpled heat exchanger shell, which subsequently transfers the heat to the soil, which acts as the ultimate heat sink. Because the system is fully-passive, it is not subject to the expenses, maintenance, and mechanical breakdowns associated with moving parts. Density, heat capacity, and thermal conductivity material properties were measured for various soil samples, and subsequently included as input for the soil heat conduction model. The soil model was coupled to a computational fluid dynamics (CFD) heat exchanger model that included the dynamic Smagorinsky large eddy simulation and k- omega turbulence models. The analysis showed that the fluid dynamics and heat transfer models worked properly, albeit at a slow pace. Nevertheless, the coupled CFD/heat conduction simulation ran long enough to determine a key parameter—the amount of heat conducted from the heat exchanger to the ground. This unique performance value, along with experimental data, was used as input for stand-alone, fast-running CFD models, as well as boundaries to obtain solutions to partial differential equations for soil heat conduction.