Improving and testing machine learning methods for benchmarking soil carbon dynamics representation of land surface models
Representation of soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon climate feedbacks. The magnitude of this uncertainty can be reduced by accurate representation of environmental controllers of SOC stocks in ESMs. In this study, we used data of environmental factors, field SOC observations, ESM projections and machine learning approaches to identify dominant environmental controllers of SOC stocks and derive functional relationships between environmental factors and SOC stocks. Our derived functional relationships predicted SOC stocks with similar accuracy as the machine learning approach. We used the derived relationships to benchmark the coupled model intercomparison project phase six ESM representation of SOC stocks. We found divergent environmental control representation in ESMs in comparison to field observations. Representation of SOC in ESMs can be improved by including additional environmental factors and representing their functional relationships with SOC consistent with observations.