Risk-Informed Management of Enterprise Security: Methodology and Applications for Nuclear Facilities
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.
This document is a draft SecuritybyDesign (SeBD) handbook produced to support the Work Plan of the Nuclear Security Summit to share best practices for nuclear security in new facility design. The Work Plan calls on States to %E2%80%9Cencourage nuclear operators and architect/engineering firms to take into account and incorporate, where appropriate, effective measures of physical protection and security culture into the planning, construction, and operation of civilian nuclear facilities and provide technical assistance, upon request, to other States in doing so.%E2%80%9D The materials for this document were generated primarily as part of a bilateral project to produce a SeBD handbook as a collaboration between the Japan Atomic Energy Agency (JAEA) Nuclear Nonproliferation Science and Technology Center and Sandia National Laboratories (SNL), which represented the US Department Energy (DOE) National Nuclear Security Administration (NNSA) under a Project Action Sheet PASPP04. Input was also derived based on tours of the Savannah River Site (SRS) and Japan Nuclear Fuel Limited (JNFL) Rokkasho Mixed Oxide Fuel fabrication facilities and associated project lessonslearned. For the purposes of the handbook, SeBD will be described as the systemlevel incorporation of the physical protection system (PPS) into a new nuclear power plant or nuclear facility resulting in a PPS design that minimizes the risk of malicious acts leading to nuclear material theft; nuclear material sabotage; and facility sabotage as much as possible through features inherent in (or intrinsic to) the design of the facility. A fourelement strategy is presented to achieve a robust, durable, and responsive security system.
This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.
Abstract not provided.
New technologies have been, and are continuing to be, developed for Safeguards, Arms Control, and Physical Protection. Application spaces and technical requirements are evolving - Overlaps are developing. Lessons learned from IAEA's extensive experience could benefit other communities. Technologies developed for other applications may benefit Safeguards - Inherent cost benefits and improvements in procurement security processes.
Abstract not provided.