Nano-enable Autonomous Sensor System
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Experimental results are presented for stress evolution, in vacuum and electrolyte, for the first monolayer of Cu on Au(111). In electrolyte the monolayer is pseudomorphic and the stress-thickness change is -0.60 N/m, while conventional epitaxy theory predicts a value of +7.76 N/m. In vacuum, the monolayer is incoherent with the underlying gold. Using a combination of first-principles based calculations and molecular dynamic simulations we analyzed these results and demonstrate that in electrolyte, overlayer coherency is maintained owing to anion adsorption.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Stress evolution during deposition of amorphous Si and Ge thin films is remarkably similar to that observed for polycrystalline films. Amorphous semiconductors were used as model materials to study the origins of deposition stresses in continuous films, where suppression of both strain relaxation and epitaxial strain inheritance provides considerable simplification. Our data show that bulk compression is established by surface stress, while a subsequent return to tensile stress arises from elastic coalescence processes occurring on the kinetically roughened surface. © 2003 The American Physical Society.