Publications

125 Results
Skip to search filters

Update on the Investigation of Commercial Drying Cycles Using the Advanced Drying Cycle Simulator

Durbin, S.G.; Pulido, Ramon P.; Williams, Ronald L.; Baigas, Beau T.; Vice, Gregory T.; Koenig, Greg J.; Fasano, Raymond E.; Salazar, Alex S.

The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents a new test apparatus, the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. This report describes the ADCS vessel build that was completed late in FY22, including the receipt of the prototypic length waterproof heater rods and construction of the fuel basket and the pressure vessel components. In addition, installations of thermocouples, emissivity coupons, pressure and vacuum lines, pressure transducers, and electrical connections were completed. Preliminary power functionality testing was conducted to demonstrate the capabilities of the ADCS. In FY23, a test plan for the ADCS will be developed to implement a drying procedure based on measurements from the process used for the High Burnup Demonstration Project. While applying power to the simulated fuel rods, this procedure is expected to consist of filling the ADCS vessel with water, draining the water with applied pressure and multiple helium blowdowns, evacuating additional water with a vacuum drying sequence at successively lower pressures, and backfilling the vessel with helium. Additional investigations are expected to feature failed fuel rod simulators with engineered cladding defects and guide tubes with obstructed dashpots to challenge the drying system with multiple water retention sites.

More Details

Quantification of Aerosol Transmission through Stress Corrosion Crack-Like Geometries

Jones, Philip A.; Pulido, Ramon P.; Perales, Adrian G.; Durbin, S.G.

The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using more significant backfill pressures in the canister, up to approximately 800 kPa. This pressure differential offers a relatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.86 mm (0.349 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to add to previous testing that characterized SCCs under well-controlled boundary conditions through the inclusion of testing improvements that establish initial conditions in a more consistent way. These ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.

More Details

Status Update for the Canister Deposition Field Demonstration

Fascitelli, Dominic G.; Durbin, S.G.; Pulido, Ramon P.; Suffield, S.R.S.; Fort, J.A.F.

This report updates the high-level test plan for evaluating surface deposition on three commercial 32PTH2 spent nuclear fuel (SNF) canisters inside NUTECH Horizontal Modular Storage (NUHOMS) Advanced Horizontal Storage Modules (AHSMs) from Orano (formerly Transnuclear Inc.) and provides a description of the surface characterization activities that have been conducted to date. The details contained in this report represent the best designs and approaches explored for testing as of this publication. Given the rapidly developing nature of this test program, some of these plans may change to accommodate new objectives or requirements. The goal of the testing is to collect highly defensible and detailed dust deposition measurements from the surface of dry storage canisters in a marine coastal environment to guide chloride-induced stress corrosion crack (CISCC) research. To facilitate surface sampling, the otherwise highly prototypic dry storage systems will not contain SNF but rather will be electrically heated to mimic the decay heat and thermal hydraulic environment. Test and heater design is supported by detailed computational fluid dynamics modeling. Instrumentation throughout the canister, storage module, and environment will provide extensive information about thermal-hydraulic behavior. Manual sampling over a comprehensive portion of the canister surface at regular time intervals will offer a high-fidelity quantification of the conditions experienced in a harsh yet realistic environment. Functional testing of the finalized heater assemblies and test apparatus is set to begin in December 2022. The proposed delivery of the canisters to the host test site is June/July 2023, which is well ahead of when the AHSM installations would be completed.

More Details

Development of Surface Sampling Techniques for the Canister Deposition Field Demonstration (FY22 Update)

Knight, Andrew W.; Schaller, Rebecca S.; Nation, Brendan L.; Durbin, S.G.; Bryan, Charles R.

This report describes the proposed surface sampling techniques and plan for the multi-year Canister Deposition Field Demonstration (CDFD). The CDFD is primarily a dust deposition test that will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters in Advanced Horizontal Storage Modules, with planned exposure testing for up to 10 years at an operating ISFSI site. One canister will be left at ambient condition, unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns for dust analysis will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, measured dust deposition rates and deposited particle sizes will improve parameterization of dust deposition models employed to predict the potential occurrence and timing of stress corrosion cracks on the stainless steel SNF canisters. The size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Previously, a preliminary sampling plan was developed, identifying possible sampling locations on the canister surfaces and sampling intervals; possible sampling methods were also described. Further development of the sampling plan has commenced through three different tasks. First, canister surface roughness, a potentially important parameter for air flow and dust deposition, was characterized at several locations on one of the test canisters. Second, corrosion testing to evaluate the potential lifetime and aging of thermocouple wires, spot welds, and attachments was initiated. Third, hand sampling protocols were developed, and initial testing was carried out. The results of those efforts are presented in this report. The information obtained from the CDFD will be critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking of SNF dry storage canisters.

More Details

Response of a Pressurized Water Reactor Dashpot Region to Commercial Drying Cycles

Pulido, Ramon P.; TACONI, ANNA M.; Salazar, Alex S.; Fasano, Raymond E.; Williams, Ronald W.; Baigas, Beau T.; Durbin, S.G.

The purpose of this report is to document updates to the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents testing updates for the Dashpot Drying Apparatus (DDA), an apparatus constructed at a reduced scale with multiple Pressurized Water Reactor (PWR) fuel rod surrogates and a single guide tube dashpot. This apparatus is fashioned from a truncated 5×5 section of a prototypic 17×17 PWR fuel skeleton and includes the lowest segment of a single guide tube, often referred to as the dashpot region. The guide tube in this assembly is open and allows for insertion of a poison rod (neutron absorber) surrogate.

More Details

Update on the Simulation of Commercial Drying of Spent Nuclear Fuel

Durbin, S.G.; Lindgren, Eric R.; Pulido, Ramon P.; Salazar, Alex S.; Fasano, Raymond E.

The purpose of this report is to document improvements in the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes.

More Details

Integration of the Back End of the Nuclear Fuel Cycle

Freeze, Geoffrey A.; Bonano, Evaristo J.; Swift, Peter S.; Kalinina, Elena A.; Hardin, Ernest H.; Price, Laura L.; Durbin, S.G.; Rechard, Robert P.; Gupta, Kuhika G.

Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.

More Details

Continued Investigations of Respirable Release Fractions for Stress Corrosion Crack-Like Geometries

Durbin, S.G.; Pulido, Ramon P.; Perales, Adrian G.; Lindgren, Eric R.; Jones, Philip G.; Mendoza, Hector M.; Phillips, Jesse P.; Lanza, M.L.; Casella, A. C.

The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using relatively high backfill pressures (up to approximately 800 kPa) in the canister to enhance internal natural convection. This pressure differential offers a comparatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.89 mm (0.350 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to demonstrate a new capability to characterize SCCs under well-controlled boundary conditions. Modeling efforts were also initiated that evaluate the depletion of aerosols in a commercial dry storage canister. These preliminary modeling and ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.

More Details

Status Update for the Canister Deposition Field Demonstration

Durbin, S.G.; Lindgren, Eric R.; Suffield, Sarah S.; Fort, James F.

This report updates the high-level test plan for evaluating surface deposition on three commercial 32PTH2 spent nuclear fuel (SNF) canisters inside NUTECH Horizontal Modular Storage (NUHOMS) Advanced Horizontal Storage Modules (AHSM) from Orano (formerly Transnuclear Inc.) and provides a description of the surface characterization activities that have been conducted to date. The details contained in this report represent the best designs and approaches explored for testing as of this publication. Given the rapidly developing nature of this test program, some of these plans may change to accommodate new objectives or requirements. The goal of the testing is to collect highly defensible and detailed surface deposition measurements from the surface of dry storage canisters in a marine coastal environment to guide chloride-induced stress corrosion crack (CISCC) research. To facilitate surface sampling, the otherwise highly prototypic dry storage systems will not contain SNF but rather will be electrically heated to mimic the thermal-hydraulic-environment. Instrumentation throughout the canister, storage module, and environment will provide an extensive amount of information for the use of model validation. Manual sampling over a comprehensive portion of the canister surface at regular time intervals will offer a high-fidelity quantification of the conditions experienced in a harsh yet realistic environment.

More Details

Investigation of Thermal-Hydraulic Effects of Dry Storage Canister Helium Backfill Loss Using the Horizontal Dry Cask Simulator

Pulido, Ramon P.; Fasano, Raymond E.; Lindgren, Eric R.; Williams, Ronald W.; Vice, Gregory T.; Durbin, S.G.

A previous investigation produced data sets that can be used to benchmark the codes and best practices presently used to determine cladding temperatures and induced cooling air flows in modern horizontal dry storage systems. The horizontal dry cask simulator (HDCS) was designed to generate this benchmark data and add to the existing knowledge base. The objective of the previous HDCS investigation was to capture the dominant physics of a commercial dry storage system in a well-characterized test apparatus for a wide range of operational parameters. The close coupling between the thermal response of the canister system and the resulting induced cooling air flow rate was of particular importance. The previous investigation explored these parameters using helium backfill at 100 kPa and 800 kPa pressure as well as air backfill with a series of simulated decay heats. The helium tests simulated a horizontal dry cask storage system at normal storage conditions with either atmospheric or elevated backfill pressure, while the air tests simulated horizontal storage canisters following a complete loss of helium backfill, in which case the helium would be replaced by air. The present HDCS investigation adds to the previous investigation by exploring steady-state conditions at various stages of the loss of helium backfill from a horizontal dry cask storage system. This is achieved by using helium/air blends as a backfill in the HDCS and running a series of tests using various simulated decay heats to explore the effects of relative helium/air molar concentration on the thermal response of a simulated horizontal dry cask storage system. A total of twenty tests were conducted where the HDCS achieved steady state for various assembly powers, representative of decay heat. The power levels tested were 0.50, 1.00, 2.50, and 5.00 kW. All tests were run at 100 kPa vessel pressure. The backfill gases used in these tests are given in this report as a function of mole fraction of helium (He), balanced by air: 1.0, 0.9, 0.5, 0.1, and 0.0 He. Steady-state conditions (where the steady-state start condition is defined as where the change in temperature with respect to time for the majority of HDCS components is less than or equal to 0.3 K/h) were achieved for all test cases.

More Details

Surface Sampling Techniques for the Canister Deposition Field Demonstration

Bryan, Charles R.; Knight, Andrew W.; Schaller, Rebecca S.; Durbin, S.G.; Nation, Brendan L.; Jensen, Philip J.

This report describes plans for dust sampling and analysis for the multi-year Canister Deposition Field Demonstration. The demonstration will use three commercial 32PTH2 NUHOMS welded stainless steel storage canisters, which will be stored at an ISFSI site in Advanced Horizontal Storage Modules. One canister will be unheated; the other two will have heaters to achieve canister surface temperatures that match, to the degree possible, spent nuclear fuel (SNF) loaded canisters with heat loads of 10 kW and 40 kW. Surface sampling campaigns will take place on a yearly or bi-yearly basis. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on SNF dry storage canisters. Specifically, the size, morphology, and composition of the deposited dust and salt particles will be quantified, as well as the soluble salt load per unit area and the rate of deposition, as a function of canister surface temperature, location, time, and orientation. Sampling locations on the canister surface will nominally include 25 locations, corresponding to 5 circumferential locations at each of the 5 longitudinal locations. At each sampling location, a 2x2 sampling grid (containing 4 sample cells) will be painted onto the metal surface. During each sampling campaign, two samples at each sampling location will be collected, in a specific routine to measure both periodic (yearly or bi-yearly) and cumulative deposition rates. For each sample, a wet and a dry sample will be collected. Wet samples will be analyzed to determine the composition of the soluble salt fraction and to estimate salt loading per unit area. Dry samples will be analyzed to assess particle size, morphology, mineralogy, and identity (e.g. for floral/faunal fragments). The data generated by this proposed sampling plan will provide detailed information on dust and salt aerosol deposits on spent nuclear fuel canister surfaces. The anticipated results include information regarding particle compositions, size distributions, and morphologies, in addition to particle deposition rates as a function of canister surface location, orientation, time, and temperature. The information gathered during the Canister Deposition Field Demonstration is critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking on SNF dry storage canisters

More Details

Preliminary Test Design and Plan for a Canister Deposition Field Demonstration

Durbin, S.G.; Lindgren, Eric R.

This report provides a high-level test plan for deploying three commercial 32PTH2 spent nuclear fuel (SNF) canisters inside NUHOMS Advanced Horizontal Storage Modules (AHSM) from Orano (formerly Transnuclear Inc.). The details contained in this report represent the best designs and approaches explored for testing as of this publication. Given the rapidly developing nature of this test program, some of these plans may change to accommodate new objectives or adapt in response to conflicting requirements. The goal of the testing is to collect highly defensible and detailed surface deposition measurements from the surface of dry storage systems in a marine coastal environment to guide chloride-induced stress corrosion crack (CISCC) research. To facilitate surface sampling, the otherwise highly prototypic dry storage systems will not contain SNF but rather will be electrically heated to mimic the thermal-hydraulic environment. Instrumentation throughout the canister, storage module, and environment will provide an extensive amount of information for the use of model validation. Manual sampling over a comprehensive portion of the canister surface at regular time intervals will offer a high-fidelity quantification of the conditions experienced in a harsh yet realistic environment.

More Details

Thermal-hydraulic investigations of a horizontal dry cask simulator

International Conference on Nuclear Engineering, Proceedings, ICONE

Pulido, Ramon P.; Lindgren, Eric R.; Durbin, S.G.; Salazar, Alex S.

Recent advances in horizontal cask designs for commercial spent nuclear fuel have significantly increased maximum thermal loading. This is due in part to greater efficiency in internal conduction pathways. Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating thermal-hydraulic models of these storage cask designs. While several testing programs have been previously conducted, these earlier validation studies did not integrate all the physics or components important in a modern, horizontal dry cask system. The purpose of this investigation is to produce data sets that can be used to benchmark the codes and best practices presently used to calculate cladding temperatures and induced cooling air flows in modern, horizontal dry storage systems. The horizontal dry cask simulator (HDCS) has been designed to generate this benchmark data and complement the existing knowledge base. Transverse and axial temperature profiles along with induced-cooling air flow are measured using various backfills of gases for a wide range of decay powers and canister pressures. The data from the HDCS tests will be used to host a blind model validation effort.

More Details

Analysis of water retention in isothermal vacuum drying test

International Conference on Nuclear Engineering, Proceedings, ICONE

Salazar, Alex; Pulido, Ramon P.; Lindgren, Eric R.; Durbin, S.G.

Validation of the extent of water removal in a dry storage system using an industrial vacuum drying procedure is needed. Water remaining in casks upon completion of vacuum drying can lead to cladding corrosion, embrittlement, and breaching, as well as fuel degradation. In order to address the lack of time-dependent industrial drying data, this study employs a vacuum drying procedure to evaluate the efficiency of water removal over time in a scaled system. Isothermal conditions are imposed to generate baseline pressure and moisture data for comparison to future tests under heated conditions. A pressure vessel was constructed to allow for the emplacement of controlled quantities of water and connections to a pumping system and instrumentation. Measurements of pressure and moisture content were obtained over time during sequential vacuum hold points, where the vacuum flow rate was throttled to draw pressures from 100 torr down to 0.7 torr. The pressure rebound, dew point, and water content were observed to eventually diminish with increasingly lower hold points, indicating a reduction in retained water.

More Details

Characterization of through-wall aerosol transmission for SCC-like geometries

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Durbin, S.G.; Lindgren, Eric R.; Pulido, Ramon P.

The flow rates and aerosol transmission properties were evaluated for an engineered microchannel with characteristic dimensions similar to those of stress corrosion cracks (SCCs) capable of forming in dry cask storage systems (DCSS) for spent nuclear fuel. Pressure differentials covering the upper limit of commercially available DCSS were also examined. These preliminary data sets are intended to demonstrate a new capability to characterize SCCs under well-controlled boundary conditions.

More Details

Materials and Dimensional Reference Handbook for the Boiling Water Reactor Dry Cask Simulator

Lindgren, Eric R.; Durbin, S.G.

The performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed analytical modeling of the system’s thermal performance. A recent investigation has been completed that produced a data set that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations [Durbin and Lindgren, 2017]. The experiments were conducted in Albuquerque, New Mexico where the local ambient atmospheric pressure is typically 83 kPa. The purpose of this handbook is to document the pertinent geometric and material property information needed to perform model validation efforts.

More Details

Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator

Durbin, S.G.; Lindgren, Eric R.

The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplified interpretation of results. Two different arrangements of ducting were used to mimic conditions for aboveground and belowground storage configurations for vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured throughout the test assembly. The induced air mass flow rate was measured for both the aboveground and belowground configurations. In addition, the impact of cross-wind conditions on the belowground configuration was quantified. Over 40 unique data sets were collected and analyzed for these efforts. Fourteen data sets for the aboveground configuration were recorded for powers and internal pressures ranging from 0.5 to 5.0 kW and 0.3 to 800 kPa absolute, respectively. Similarly, fourteen data sets were logged for the belowground configuration starting at ambient conditions and concluding with thermal-hydraulic steady state. Over thirteen tests were conducted using a custom-built wind machine. The results documented in this report highlight a small, but representative, subset of the available data from this test series. This addition to the dry cask experimental database signifies a substantial addition of first-of-a-kind, high-fidelity transient and steady-state thermal-hydraulic data sets suitable for CFD model validation.

More Details

Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

Durbin, S.G.; Lindgren, Eric R.

The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.

More Details

Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

Durbin, S.G.; Lindgren, Eric R.

The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured for a wide range of decay power and helium cask pressures. Of particular interest was the evaluation of the effect of increased helium pressure on peak cladding temperatures (PCTs) for identical thermal loads. All steady state peak temperatures and induced flow rates increased with increasing assembly power. Peak cladding temperatures decreased with increasing internal helium pressure for a given assembly power, indicating increased internal convection. In addition, the location of the PCT moved from near the top of the assembly to ~1/3 the height of the assembly for the highest (8 bar absolute) to the lowest (0 bar absolute) pressure studied, respectively. This shift in PCT location is consistent with the varying contribution of convective heat transfer proportional with of internal helium pressure.

More Details

Used fuel extended storage security and safeguards by design roadmap

Durbin, S.G.; Lindgren, Eric R.; Jones, Robert B.; Ketusky, Edward K.; England, Jeffery L.; Scaglione, John S.; Scherer, Carolynn S.; Sprinkle, James S.; Miller, Michael M.; Rauch, Eric R.; Dunn, Timothy D.

In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

More Details

Numerical Estimation of the Spent Fuel Ratio

Lindgren, Eric R.; Durbin, S.G.; Wilke, Jason W.; Margraf, J.M.; Dunn, T.A.D.

Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO 2 ), have been conducted in the interim to more definitively determine the source term from these postulated events. However, the validity of these large- scale results remain in question due to the lack of a defensible spent fuel ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical surrogate. Previous attempts to define the SFR in the 1980's have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Because of the large uncertainty surrounding the SFR, estimates of releases from security-related events may be unnecessarily conservative. Credible arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and storage of spent nuclear fuel in dry cask systems. In the present work, the shock physics codes CTH and ALE3D were used to simulate spent nuclear fuel (SNF) and DUO 2 targets impacted by a high-velocity jet at an ambient temperature condition. These preliminary results are used to illustrate an approach to estimate the respirable release fraction for each type of material and ultimately, an estimate of the SFR. This page intentionally blank

More Details

Test Plan for the Boiling Water Reactor Dry Cask Simulator

Durbin, S.G.; Lindgren, Eric R.

The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.

More Details

Status update of the BWR cask simulator

Lindgren, Eric R.; Durbin, S.G.

The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on heat load and the effect of simulated wind on a simplified below ground vent configuration.

More Details

Numerical estimation of the Spent Fuel Ratio

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Durbin, S.G.; Lindgren, Eric R.; Wilke, Jason W.; Jameson, Kevin J.

Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO2), have been conducted in the interim to more definitively determine the source term from these postulated events. In all the previous studies, the postulated attack of greatest interest was by a conical shape charge (CSC) that focuses the explosive energy much more efficiently than bulk explosives. However, the validity of these large-scale results remain in question due to the lack of a defensible Spent Fuel Ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical surrogate. Previous attempts to define the SFR in the 1980's have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Because of the large uncertainty surrounding the SFR, estimates of releases from security-related events may be unnecessarily conservative. Credible arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and storage of spent nuclear fuel in dry cask systems. In the present work, the CTH shock physics code is used to simulate spent nuclear fuel (SNF) and DUO2 targets impacted by a CSC jet at an ambient temperature condition. These preliminary results are used to illustrate an approach to estimate the respirable release fraction for each type of material and ultimately, an estimate of the SFR.

More Details

Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation

Durbin, S.G.; Lindgren, Eric R.; Rechard, Robert P.; Sorenson, Ken B.

The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

More Details

An approach to determine a defensible spent fuel ratio

Durbin, S.G.; Lindgren, Eric R.

Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO2), have been conducted in the interim to more definitively determine the source term from these postulated events. In all the previous studies, the postulated attack of greatest interest was by a conical shape charge (CSC) that focuses the explosive energy much more efficiently than bulk explosives. However, the validity of these large-scale results remain in question due to the lack of a defensible Spent Fuel Ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical DUO2 surrogate. Previous attempts to define the SFR have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Different researchers have suggested using SFR values of 3 to 5.6. Sound technical arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and dry storage of spent nuclear fuel. Currently, Oak Ridge National Laboratory (ORNL) is in possession of several samples of spent nuclear fuel (SNF) that were used in the original SFR studies in the 1980s and were intended for use in a modern effort at Sandia National Laboratories (SNL) in the 2000s. A portion of these samples are being used for a variety of research efforts. However, the entirety of SNF samples at ORNL is scheduled for disposition at the Waste Isolation Pilot Plant (WIPP) by approximately the end of 2015. If a defensible SFR is to be determined for use in storage and transportation security analyses, the need to begin this effort is urgent in order to secure the only known available SNF samples with a clearly defined path to disposal.

More Details

A methodology to quantify the release of spent nuclear fuel from dry casks during security-related scenarios

Durbin, S.G.

Assessing the risk to the public and the environment from a release of radioactive material produced by accidental or purposeful forces/environments is an important aspect of the regulatory process in many facets of the nuclear industry. In particular, the transport and storage of radioactive materials is of particular concern to the public, especially with regard to potential sabotage acts that might be undertaken by terror groups to cause injuries, panic, and/or economic consequences to a nation. For many such postulated attacks, no breach in the robust cask or storage module containment is expected to occur. However, there exists evidence that some hypothetical attack modes can penetrate and cause a release of radioactive material. This report is intended as an unclassified overview of the methodology for release estimation as well as a guide to useful resource data from unclassified sources and relevant analysis methods for the estimation process.

More Details

Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks

Durbin, S.G.; Morrow, Charles W.

The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

More Details

Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement

Lindgren, Eric R.; Durbin, S.G.

This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

More Details

Guideline for bolted joint design and analysis : version 1.0

Brown, Kevin H.; Morrow, Charles W.; Durbin, S.G.

This document provides general guidance for the design and analysis of bolted joint connections. An overview of the current methods used to analyze bolted joint connections is given. Several methods for the design and analysis of bolted joint connections are presented. Guidance is provided for general bolted joint design, computation of preload uncertainty and preload loss, and the calculation of the bolted joint factor of safety. Axial loads, shear loads, thermal loads, and thread tear out are used in factor of safety calculations. Additionally, limited guidance is provided for fatigue considerations. An overview of an associated Mathcad{copyright} Worksheet containing all bolted joint design formulae presented is also provided.

More Details

Fusion transmutation of waste: design and analysis of the in-zinerator concept

Cleary, Virginia D.; Cipiti, Benjamin B.; Guild-Bingham, Avery G.; Cook, Jason T.; Durbin, S.G.; Keith, Rodney L.; Morrow, Charles W.; Rochau, Gary E.; Turgeon, Matthew C.; Young, Michael F.

Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

More Details

Z-inertial fusion energy: power plant final report FY 2006

Olson, Craig L.; McConnell, Paul E.; Rochau, Gary E.; Vigil, Virginia L.; Cipiti, Benjamin B.; Rodriguez, Salvador B.; Morrow, Charles W.; Farnum, Cathy O.; Durbin, S.G.; Aragon, Dannelle S.

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

More Details
125 Results
125 Results