Publications

12 Results
Skip to search filters

Quantifying Thermal Output of Energetic Materials (LDRD Final Report)

Kearney, S.P.; Swain, William E.; Stacy, Shawn C.; Halls, Benjamin R.; wwerik, wwerik; Marinis, Ryan T.; Richardson, Daniel R.; Marsh, Andrew W.; Mazumdar, Yi C.

We present the results of an LDRD project, funded by the Nuclear Deterrence IA, to develop capabilities for quantitative assessment of pyrotechnic thermal output. The thermal battery igniter is used as an exemplar system. Experimental methodologies for thermal output evaluation are demonstrated here, which can help designers and engineers better specify pyrotechnic components , provide thermal output guidelines for new formulations, and generate new metrics for assessing component performance and margin given a known failure condition. A heat-transfer analysis confirms that the dominant mode of energy transfer from the pyrotechnic output plume to the heat pellet is conduction via deposition of hot titanium particles. A simple lumped-parameter model of titanium particle heat transfer and a detailed multi-phase model of deposition heat transfer are discussed. Pyrotechnic function, as defined by "go/no-go" standoff testing of a heat pellet, is correlated with experimentally measured igniter plume temperature, titanium metal particle temperature, and energy deposition. Three high-speed thermal diagnostics were developed for this task. A three-color imaging pyrometer, acquiring 100k images per second on three color channels, is deployed for measurement of titanium particle temperatures. Complimentary measurements of the overall igniter plume emission ("color") temperature were conducted using a transmission-grating spectrograph in line-imaging mode. Heat flux and energy deposition to a cold wall at the heat-pellet location were estimated using an eroding thermocouple probe, with a frequency response of ~5 kHz. Ultimate "go/no-go" function in the igniter/heat-pellet system was correlated with quantitative thermal metrics, in particular surface energy deposition and plume color temperature. Titanium metal-particle and plume color temperatures both experience an upper bound approximated by the 3245-K boiling point of TiO2. Average metal-particle temperatures remained nearly constant for all standoff distances at T = 2850 K, ± 300 K, while plume color temperature and heat flux decay with standoff—suggesting that heat-pellet failure results from a drop in metal-particle flux and not particle temperature. At 50% likelihood of heat-pellet failure, peak time-resolved plume color temperatures drop well below TiO2 boiling to ~2000 - 2200 K, near the TiO2 melting point. Estimates of peak heat flux decline from up to 1 GW/m2 for near-field standoffs to below 320 MW/m2 at 50% failure likelihood.

More Details

Multi-Color Pyrometry of High-speed Ejecta from Pyrotechnic Igniters

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Halls, Benjamin R.; Swain, William E.; Stacy, Shawn C.; Marinis, Ryan T.; Kearney, S.P.

A high-speed, two-color pyrometer was developed and employed to characterize the temperature of the ejecta from pyrotechnic igniters. The pyrometer used a single objective lens, beamsplitter, and two high-speed cameras to maximize the spatial and temporal resolutions. The pyrometer used the integrated intensity of under-resolved particles to maintain a large region of interest to capture more particles. The spectral response of the pyrometer was determined based on the response of each optical component and the total system was calibrated using a black body source to ensure accurate intensity ratios over the range of interest.

More Details

Tunable Infrared Laser Absorption Spectroscopy of Aluminum Monoxide $A^2\Pi_i $–$X^2\Sigma^+$

Journal of Quantitative Spectroscopy and Radiative Transfer

Murzyn, Christopher M.; Allen, David J.; Baca, Andres N.; Ching, Mitchell L.; Marinis, Ryan T.

We report the details of an infrared, laser absorption diagnostic capable of quantifying aluminum monoxide temperature and column density at 100 kHz repetition rate. This novel technique employs a near infrared MEMS-VCSEL to measure rotationally resolved optical absorption spectra of aluminum monoxide $A^2\Pi_i$ - $X^2\Sigma^+$ from approximately 7400 –7900 cm-1. Temperatures and column densities are extracted from model regressions to provide temporally resolved thermochemical information on aluminum oxidation reactions. The measurement capability is demonstrated by performing 100 kHz measurement in the plume of an exploding bridgewire with measured temperatures of 3450–3100 K and column densities of 1– 11 x 1016cm -2. To the authors knowledge, this is the first use of the AlO $A^2\Pi_i$ - $X^2\Sigma^+$ transition to characterize aluminum combustion environments. Details regarding signal extraction and calibration of MEMS-VCSEL spectra are also included. Although unsuccessful, efforts to extract kinetic temperature and column density from simultaneously measured, atomic aluminum 2P3/2,1/2-2S1/2 transitions at 7618 cm-1 and 7602 cm-1 are also described.

More Details
12 Results
12 Results