We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480-1640 nm and 95 nm from 1280-1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.
We experimentally demonstrate amplitude modulators (AMs) with >65 dB extinction across over a 160 nm spectral range. The output optical phase response is also characterized when the amplitude is modulated.
Dispersion engineering enables phase matching for nonlinear down conversion from 775nm to the telecom c-band in lithium niobite microdisk resonators without periodic poling. High rates of spontaneous creation of entangled photon pairs is observed.
We demonstrate doubly resonant second harmonic generation from 1550 to 775 nm in microdisks fabricated from lithium niobate on insulator wafers. We use a novel phase matching technique to achieve a conversion efficiency of 0.167%/mW.
We provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.