Publications

Results 1–50 of 125
Skip to search filters

Design and Characterization of the Sandia Free-Piston Reflected Shock Tunnel

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Lynch, Kyle P.; Grasser, Thomas W.; Farias, Paul A.; Daniel, Kyle; Spillers, Russell W.; Downing, Charley R.; Wagner, Justin W.

A new reflected shock tunnel has been commissioned at Sandia capable of generating hypersonic environments at realistic flight enthalpies. The tunnel uses an existing free-piston driver and shock tube coupled to a conical nozzle to accelerate the flow to approximately Mach 9. The facility design process is outlined and compared to other ground test facilities. A representative flight enthalpy condition is designed using an in-house state-to-state solver and piston dynamics model and evaluated using quasi-1D modeling with the University of Queensland L1d code. This condition is demonstrated using canonical models and a calibration rake. A 25 cm core flow with 4.6 MJ/kg total enthalpy is achieved over an approximately 1 millisecond test time. Analysis shows that increasing piston mass should extend test time by a factor of 2-3.

More Details

Aero-Optical Measurements of a Mach 8 Boundary Layer

AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021

Lynch, Kyle P.; Spillers, Russell W.; Miller, Nathan M.; Guildenbecher, Daniel R.; Gordeyev, Stanislav

Measurements are presented of the aero-optic distortion produced by a Mach 8 turbulent boundary layer in the Sandia Hypersonic Wind Tunnel. Flat optical inserts installed in the test section walls enabled a double-pass arrangement of a collimated laser beam. The distortion of this beam was imaged by a high-speed Shack-Hartmann sensor at a sampling rate of up to 1 MHz. Analysis is performed using two processing methods to extract the aero-optic distortion from the data. A novel de-aliasing algorithm is proposed to extract convective-only spectra and is demonstrated to correctly quantify the physical spectra even in case of relatively low sampling rates. The results are compared with an existing theoretical model, and it is shown that this model under-predicts the experimentally measured distortions regardless of the processing method used. Possible explanations for this discrepancy are presented. The presented results represent to-date the highest Mach number for which aero-optic boundary layer distortion measurements are available.

More Details

Hypersonic fluid-structure interaction on the control surface of a slender cone

AIAA Scitech 2021 Forum

Pandey, Anshuman; Casper, Katya M.; Soehnel, Melissa M.; Spillers, Russell W.; Bhakta, Rajkumar; Beresh, Steven J.

This experimental study explores the fluid-structure interactions occurring between a control surface and the hypersonic flow deflected by it. The control surface is simplified for this work as a spanwise finite wedge placed on a longitudinally sliced part of the cone. The front surface of the wedge is a thin panel which is designed to respond to the unsteady fluid loading arising from the shock-wave/boundary layer interactions. Experiments have been conducted in the Sandia Hypersonic Wind Tunnel at Mach 5 and Mach 8 at wedge angles of 10◦, 20◦ and 30◦ . High-speed schlieren and backside panel accelerometer measurements capture the unsteady flow dynamics and structural response of the thin panel, respectively. For attached or small separation interactions, the transitional regime has the strongest panel fluctuations with convective shock undulations induced by the boundary layer disturbance shown to be associated with dominant panel vibrations. For large separated interactions, shear layer flapping can excite select panel modes. Heating of the panel causes a downward shift in natural mode frequencies.

More Details

Extending the frequency limits of “postage-stamp piv” to mhz rates

AIAA Scitech 2020 Forum

Beresh, Steven J.; Spillers, Russell W.; Soehnel, Melissa M.; Spitzer, Seth M.

Two techniques have extended the effective frequency limits of postage-stamp PIV, in which a pulse-burst laser and very small fields of view combine to achieve high repetition rates. An interpolation scheme reduced measurement noise, raising the effective frequency response of previous 400-kHz measurements from about 120 kHz to 200 kHz. The other technique increased the PIV acquisition rate to very nearly MHz rates (990 kHz) by using a faster camera. Charge leaked through the camera shift register at these framing rates but this was shown not to bias the measurements. The increased framing rate provided oversampled data and enabled use of multi-frame correlation algorithms for a lower noise floor, increasing the effective frequency response to 240 kHz where the interrogation window size begins to spatially filter the data. Good agreement between the interpolation technique and the MHz-rate PIV measurements was established. The velocity spectra suggest turbulence power-law scaling in the inertial subrange steeper than the theoretical-5/3 scaling, attributed to an absence of isotropy.

More Details

Tailoring fleet for cold hypersonic flows

AIAA Scitech 2020 Forum

Zhang, Yibin Z.; Beresh, Steven J.; Casper, Katya M.; Richardson, Daniel R.; Soehnel, Melissa M.; Spillers, Russell W.

Bench-top tests are conducted to characterize Femtosecond Laser Electronic Excitation Tagging (FLEET) in static low pressure (35 mTorr-760 Torr) conditions, and to measure the acoustic disturbance caused by the resulting filament as a function of tagging wavelength and energy. The FLEET line thickness as a function of pressure and delay is described by a simple diffusion model. Initial FLEET measurements in a Mach 8 flow show that gate times of ≥ 1µs can produce visible smearing of the FLEET emission and challenge the traditional Gaussian fitting methods used to find the line center. To minimize flow perturbations and uncertainty of the final line position, several recommendations are offered: using third harmonic FLEET at 267 nm for superior signal levels with lower energy deposition than both 800 nm and 400 nm FLEET, and short camera delays and exposure times to reduce fitting uncertainty. This guidance is implemented in a Mach 8 test condition and results are presented.

More Details

A cfd validation challenge for transonic, shock-induced separated flow: Experimental characterization

AIAA Scitech 2020 Forum

Lynch, Kyle P.; Lance, Blake L.; Lee, Gyu S.; Naughton, Jonathan W.; Miller, Nathan M.; Barone, Matthew F.; Beresh, Steven J.; Spillers, Russell W.; Soehnel, Melissa M.

An experimental characterization of the flow environment for the Sandia Axisymmetric Transonic Hump is presented. This is an axisymmetric model with a circular hump tested at a transonic Mach number, similar to the classic Bachalo-Johnson configuration. The flow is turbulent approaching the hump and becomes locally supersonic at the apex. This leads to a shock-wave/boundary-layer interaction, an unsteady separation bubble, and flow reattachment downstream. The characterization focuses on the quantities required to set proper boundary conditions for computational efforts described in the companion paper, including: 1) stagnation and test section pressure and temperature; 2) turbulence intensity; and 3) tunnel wall boundary layer profiles. Model characterization upstream of the hump includes: 1) surface shear stress; and 2) boundary layer profiles. Note: Numerical values characterizing the experiment have been redacted from this version of the paper. Model geometry and boundary conditions will be withheld until the official start of the Validation Challenge, at which time a revised version of this paper will become available. Data surrounding the hump are considered final results and will be withheld until completion of the Validation Challenge.

More Details

Time-resolved planar velocimetry of the supersonic wake of a wall-mounted hemisphere

AIAA Journal

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.

Time-resolved particle image velocimetry was conducted at 40 kHz using a pulse-burst laser in the supersonic wake of a wall-mounted hemisphere. Velocity fields suggest a recirculation region with two lobes, in which flow moves away from the wall near the centerline and recirculates back toward the hemisphere off the centerline, contrary to transonic configurations. Spatio-temporal cross-correlations and conditional ensemble averages relate the characteristic behavior of the unsteady shock motion to the flapping of the shear layer. At Mach 1.5, oblique shocks develop, associated with vortical structures in the shear layer and convect downstream in tandem; a weak periodicity is observed. Shock motion at Mach 2.0 appears somewhat different, wherein multiple weak disturbances propagate from shear-layer turbulent structures to form an oblique shock that ripples as these vortices pass by. Bifurcated shock feet coalesce and break apart without evident periodicity. Power spectra show a preferred frequency of shear-layer flapping and shock motion for Mach 1.5, but at Mach 2.0, a weak preferred frequency at the same Strouhal number of 0.32 is found only for oblique shock motion and not shear-layer unsteadiness.

More Details

Revisiting bachalo-johnson: The sandia axisymmetric transonic hump and cfd challenge

AIAA Aviation 2019 Forum

Lynch, Kyle P.; Miller, Nathan M.; Barone, Matthew F.; Beresh, Steven J.; Spillers, Russell W.; Henfling, John F.; Soehnel, Melissa M.

A new wind tunnel experiment is underway to provide a comprehensive CFD validation dataset of an unsteady, transonic flow. The experiment is based on the work of Bachalo and Johnson; an axisymmetric model with a spherical hump is tested at a transonic Mach number. The flow is turbulent approaching the hump and becomes locally supersonic at the apex. This leads to a shock-wave/boundary-layer interaction, an unsteady separation bubble, and flow reattachment downstream. A suite of diagnostics characterizes the flow: oil-flow surface visualization for shock and reattachment locations, particle image velocimetry for mean flow and turbulence properties, fast pressure-sensitive paint for model pressure distributions and unsteadiness, high-speed Schlieren for shock position and motion, and oil-film interferometry for surface shear stress. This will provide a new level of detail for validation studies; therefore, a blind comparison, or ‘CFD Challenge’ is proposed to the community. Participants are to be provided the geometry, incoming boundary layer, and boundary conditions, and are free to simulate with their method of choice and submit their results. A blind comparison will be made to the new experimental data, with the goal of evaluating the state of various CFD methods for use in unsteady, transonic flows.

More Details

Hypersonic wake measurements behind a slender cone using fleet velocimetry

AIAA Aviation 2019 Forum

Zhang, Yibin Z.; Richardson, Daniel R.; Beresh, Steven J.; Casper, Katya M.; Soehnel, Melissa M.; Henfling, John F.; Spillers, Russell W.

Femtosecond Laser Electronic Excitation Tagging (FLEET) is used to measure velocity flowfields in the wake of a sharp 7◦ half-angle cone in nitrogen at Mach 8, over freestream Reynolds numbers from 4.3∗106 /m to 13.8∗106 /m. Flow tagging reveals expected wake features such as the separation shear layer and two-dimensional velocity components. Frequency-tripled FLEET has a longer lifetime and is more energy efficient by tenfold compared to 800 nm FLEET. Additionally, FLEET lines written with 267 nm are three times longer and 25% thinner than that written with 800 nm at a 1 µs delay. Two gated detection systems are compared. While the PIMAX 3 ICCD offers variable gating and fewer imaging artifacts than a LaVision IRO coupled to a Photron SA-Z, its slow readout speed renders it ineffective for capturing hypersonic velocity fluctuations. FLEET can be detected to 25 µs following excitation within 10 mm downstream of the model base, but delays greater than 4 µs have deteriorated signal-to-noise and line fit uncertainties greater than 10%. In a hypersonic nitrogen flow, exposures of just several hundred nanoseconds are long enough to produce saturated signals and/or increase the line thickness, thereby adding to measurement uncertainty. Velocity calculated between the first two delays offer the lowest uncertainty (less than 3% of the mean velocity).

More Details

Influence of the Fluctuating Velocity Field on the Surface Pressures in a Jet/Fin Interaction

Journal of Spacecraft and Rockets

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

The mechanism by which aerodynamic effects of jet/fin interaction arise from the flow structure of a jet in crossflow is explored using particle image velocimetry measurements of the crossplane velocity field as it impinges on a downstream fin instrumented with high-frequency pressure sensors. A Mach 3.7 jet issues into a Mach 0.8 crossflow from either a normal or inclined nozzle, and three lateral fin locations are tested. Conditional ensemble-averaged velocity fields are generated based upon the simultaneous pressure condition. Additional analysis relates instantaneous velocity vectors to pressure fluctuations. The pressure differential across the fin is driven by variations in the spanwise velocity component, which substitutes for the induced angle of attack on the fin. Pressure changes at the fin tip are strongly related to fluctuations in the streamwise velocity deficit, wherein lower pressure is associated with higher velocity and vice versa. The normal nozzle produces a counter-rotating vortex pair that passes above the fin, and pressure fluctuations are principally driven by the wall horseshoe vortex and the jet wake deficit. In conclusion, the inclined nozzle produces a vortex pair that impinges the fin and yields stronger pressure fluctuations driven more directly by turbulence originating from the jet mixing.

More Details

Hypersonic Fluid-Structure Interactions on a Slender Cone

AIAA Journal

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Hunter, Patrick H.; Spitzer, Seth M.

Fluid-structure interactions were studies on a 7° half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8 and in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel. A thin composite panel was integrated into the cone and the response to boundary-layer disturbances was characterized by accelerometers on the backside of the panel. Here, under quiet-flow conditions at Mach 6, the cone boundary layer remained laminar. Artificially generated turbulent spots excited a directionally dependent panel response which would last much longer than the spot duration.

More Details

Influence of the fluctuating velocity field on the surface pressures in a jet/fin interaction

Journal of Spacecraft and Rockets

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian

The mechanism by which aerodynamic effects of jet/fin interaction arise from the flow structure of a jet in crossflow is explored using particle image velocimetry measurements of the crossplane velocity field as it impinges on a downstream fin instrumented with high-frequency pressure sensors. A Mach 3.7 jet issues into a Mach 0.8 crossflow from either a normal or inclined nozzle, and three lateral fin locations are tested. Conditional ensemble-averaged velocity fields are generated based upon the simultaneous pressure condition. Additional analysis relates instantaneous velocity vectors to pressure fluctuations. The pressure differential across the fin is driven by variations in the spanwise velocity component, which substitutes for the induced angle of attack on the fin. Pressure changes at the fin tip are strongly related to fluctuations in the streamwise velocity deficit, wherein lower pressure is associated with higher velocity and vice versa. The normal nozzle produces a counter-rotating vortex pair that passes above the fin, and pressure fluctuations are principally driven by the wall horseshoe vortex and the jet wake deficit. The inclined nozzle produces a vortex pair that impinges the fin and yields stronger pressure fluctuations driven more directly by turbulence originating from the jet mixing.

More Details

Preliminary investigation of cavity sidewall effects on resonance dynamics using time-resolved particle image velocimetry and pressure sensitive paint

47th AIAA Fluid Dynamics Conference, 2017

Wagner, Justin W.; Beresh, Steven J.; Casper, Katya M.; DeMauro, Edward P.; Lynch, Kyle P.; Spillers, Russell W.; Henfling, John F.; Spitzer, Seth M.

The spanwise variation of resonance dynamics in the Mach 0.94 flow over a finite-span cavity was explored using stereoscopic time-resolved particle image velocimetry (TR-PIV) and time-resolved pressure sensitive paint (TR-PSP). The TR-PSP data were obtained along the cavity floor, whereas the TR-PIV measurements were made in a planform plane just above the cavity lip line. The pressure data showed relatively coherent distributions across the span. In contrast, the PIV showed a significant variation in resonance dynamics to occur across the span in the plane above the cavity. A substantial influence of the sidewalls appears to stem from spillage vortices. At the first cavity mode frequency, streamwise velocity fluctuations were several times higher near the sidewalls in comparison to the centerline values. Importantly, PSDs of streamwise velocity in the region of the spillage vortices showed a large peak to occur at mode one, indicating velocity fluctuations in these regions can have a preferred frequency. The resonance fluctuations in the velocity fields at modes two and three demonstrated a complex spatial dependence that varied with spanwise location.

More Details

Spatial distribution of pressure resonance in compressible cavity flow

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Casper, Katya M.; Wagner, Justin W.; Beresh, Steven J.; Spillers, Russell W.; Henfling, John F.; DeChant, Lawrence J.

The development of the unsteady pressure field on the floor of a rectangular cavity was studied at Mach 0.9 using high-frequency pressure-sensitive paint. Power spectral amplitudes at each cavity resonance exhibit a spatial distribution with an oscillatory pattern; additional maxima and minima appear as the mode number is increased. This spatial distribution also appears in the propagation velocity of modal pressure disturbances. This behavior was tied to the superposition of a downstream-propagating shear-layer disturbance and an upstream-propagating acoustic wave of different amplitudes and convection velocities, consistent with the classical Rossiter model. The summation of these waves generates an interference pattern in the spatial pressure amplitudes and resulting phase velocity of the resonant pressure fluctuations.

More Details

Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity

AIAA Journal

Beresh, Steven J.; Wagner, Justin W.; Casper, Katya M.; DeMauro, Edward P.; Henfling, John F.; Spillers, Russell W.

Pulse-burst particle image velocimetry has been used to acquire time-resolved data at 37.5 kHz of the flow over a finite-width rectangular cavity at Mach 0.8. Power spectra of the particle image velocimetry data reveal four resonance modes that match the frequencies detected simultaneously using high-frequency wall pressure sensors, but whose magnitudes exhibit spatial dependence throughout the cavity. Spatiotemporal cross correlations of velocity to pressure were calculated after bandpass filtering for specific resonance frequencies. Cross-correlation magnitudes express the distribution of resonance energy, revealing local maxima and minima at the edges of the shear layer attributable to wave interference between downstream-and upstream-propagating disturbances. Turbulence intensities were calculated using a triple decomposition and are greatest in the core of the shear layer for higher modes, where resonant energies ordinarily are lower. Most of the energy for the lowest mode lies in the recirculation region and results principally from turbulence rather than resonance. Together, the velocity-pressure cross correlations and the triple-decomposition turbulence intensities explain the sources of energy identified in the spatial distributions of power spectra amplitudes.

More Details

“Postage-stamp PIV:” Small velocity fields at 400 kHz for turbulence spectra measurements

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.

Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4,000 frames, but for an array of only 128 × 120 pixels, giving the moniker of “postage-stamp PIV.” The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 100 kHz at which point a noise floor emerges dependent upon the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. One is the well-known inertial subrange with a slope of -5/3 at high frequencies. The other displays a -1 power-law dependence for a decade of mid-range frequencies corresponding to the energetic eddies measured by PIV, which appears to have been previously unrecognized for high-speed free shear flows.

More Details

Crossow transition on a pitched cone at mach 8

47th AIAA Fluid Dynamics Conference, 2017

Edelman, Joshua B.; Casper, Katya M.; Henfling, John F.; Spillers, Russell W.; Schneider, Steven P.

Boundary-layer transition was measured on a pitched, 7° half-angle cone in a Mach 8 conventional wind tunnel. On a smooth cone, transition via second-mode waves was ob- served at all angles of attack. In addition, naturally-excited stationary crossow waves were apparent in temperature sensitive paint images, but did not appear to lead to transition. Two patterns of roughness elements were used to generate higher-amplitude stationary crossow waves. Breakdown of the stationary waves was observed. The roughness resulted in instability amplitudes nearly an order of magnitude larger than the smooth cone at the same Reynolds numbers and higher instability growth rates. Transition occurred 30% - 40% sooner using the roughness elements with peak amplitudes near 15 - 20%, for α ≥ 4°. A low-frequency, coherent wave was measured at all angles of attack. The calculated phase velocity shows a strong dependence on angle of attack, but the propagation angle is similar for all non-zero α. The measured wave properties are curiously similar to measurements of a suspected tunnel-noise-driven instability made on an elliptic cone at Mach 6.

More Details

Fluid-Structure Interactions using Controlled Disturbances on a Slender Cone in Hypersonic Flow

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Hunter, Patrick H.

Fluid-structure interactions were studied on a 7 * half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 8 over a range of freestream Reynolds numbers b etween 3 . 3 and 14 . 5 x 10 6 / m . A thin panel with tunable structural natural frequencies was integrated into the cone and exposed to naturally developing boundary layers. An elevated panel re sponse was measured during boundary- layer transition at frequencies corresponding to the turbu lent burst rate, and lower vibrations were measured under a turbulent boundary layer. Controlled pert urbations from an electrical discharge were then introduced into the boundary layer at varying freq uencies corresponding to the struc- tural natural frequencies of the panel. The perturbations w ere not strong enough to drive a panel response exceeding that due to natural transition. Instead at high repetition rates, the perturber modified the turbulent burst rate and intermittency on the co ne and therefore changed the condi- tions for when an elevated transitional panel vibration res ponse occurred. Studies were also conducted in the Boeing/AFOSR Mach 6 Quiet Tunnel at Purdue University. Under quiet flow, natural transition does not occur, and the c ontrolled perturbations are the only disturbance source. A clear panel response to turbulent spo ts created by the controlled pertur- bations was observed at varying frequencies of spot generat ion. The quiet-flow measurements confirm the clear relationship between turbulent spot passa ge and panel vibration.

More Details

Response of a store with tunable natural frequencies in compressible cavity flow

AIAA Journal

Wagner, Justin W.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick H.; Spillers, Russell W.; Henfling, John F.

Fluid–structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58–1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies by about 10–300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. In conclusion, mode matching in the spanwise direction did little to increase vibrations.

More Details
Results 1–50 of 125
Results 1–50 of 125