Publications

28 Results
Skip to search filters

Analysis of gas samples collected from the DOE high burn-up demonstration cask

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Bryan, Charles R.; Jarek, Russell L.; Flores, Christopher; Leonard, Elliott J.

The DOE and industry collaborators have initiated the high burn-up demonstration project to evaluate the effects of drying and long-term dry storage on high burn-up fuel. Fuel was transferred to a dry storage cask, which was then dried using standard industry vacuum-drying techniques and placed on a storage pad to be opened and the fuel examined in 10 years. Helium fill gas samples were collected 5 hours, 5 days, and 12 days after closure. The samples were analyzed for fission gases (85Kr) as an indicator of damaged or leaking rods, and then analyzed to determine water content and concentrations of other trace gases. Gamma-ray spectroscopy found no detectible 85Kr. Sample water contents proved difficult to measure, requiring heating to desorb water from the inner surface of the sampling bottles. Final results indicated that water in the cask gas phase built up over 12 days to 17,400 ppmv ±10%, equivalent to ∼100 ml of water within the cask gas phase. Trace gases were measured by direct gas mass spectrometry. Carbon dioxide built up over two weeks to 930 ppmv, likely due to breakdown of hydrocarbon contaminants (possibly vacuum pump oil) in the cask. Hydrogen built up to nearly 500 ppmv. and may be attributable to water radiolysis and/or to metal corrosion in the cask.

More Details

Overview of Total System Model Used for the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada

Proposed for publication in Reliability Engineering and System Safety.

Hansen, Clifford H.; Olszewska-Wasiolek, Maryla A.; Bryan, Charles R.; Hardin, Ernest H.; Jarek, Russell L.; Mariner, Paul M.; Mattie, Patrick D.; Sassani, David C.; Sevougian, Stephen D.; Stein, Joshua S.

Abstract not provided.

Evaluation of the corrosivity of dust deposited on waste packages at Yucca Mountain, Nevada

Materials Research Society Symposium Proceedings

Bryan, Charles R.; Jarek, Russell L.; Wolery, Thomas; Shields, David; Sutton, Mark; Hardin, Ernest; Barr, Deborah

Potentially corrosive brines can form during post-closure by deliquescence of salt minerals in dust deposited on the surface of waste packages at Yucca Mountain during operations and the pre-closure ventilation period. Although thermodynamic modeling and experimental studies of brine deliquescence indicates that brines are likely to form, they will be nitrate-rich and non-corrosive. Processes that modify the brines following deliquescence are beneficial with respect to inhibition of corrosion. For example, acid degassing (HCl, HNO3) could dry out brines, but kinetic limitations are likely to limit the effect to increasing their passivity by raising the pH and increasing the NO3/Cl ratio. Predicted dust quantities and maximum brine volumes on the waste package surface are small, and physical isolation of salt minerals in the dust may inhibit formation of eutectic brines and decrease brine volumes. If brines do contact the WP surface, small droplet volumes and layer thicknesses do not support development of diffusive gradients necessary for formation on separate anodic-cathodic zones required for localized corrosion. Finally, should localized corrosion initiate, corrosion product buildup will stifle corrosion, by limiting oxygen access to the metal surface, by capillary retention of brine in corrosion product porosity, or by consumption of brine components (Cl-). © 2006 Materials Research Society.

More Details

Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05)

Thornberg, Steven M.; Coker, Eric N.; Steen, William A.; Jarek, Russell L.

The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform qualitatively as well as the ETEK material for the ORR, a non-trivial achievement. A fuel cell test showed that Pt/C outperformed the ETEK material by an average of 50% for a 300 hour test. Increasing surface area decreases the amount of Pt needed in a fuel cell, which translates into cost savings. Furthermore, the increased performance realized in the fuel cell test might ultimately mean less Pt is needed in a fuel cell; this again translates into cost savings. Finally, enhanced long-term stability is a key driver within the fuel cell community as improvements in this area must be realized before fuel cells find their way into the marketplace; these Pt/C materials hold great promise of enhanced stability over time. An external laser desorption ion source was successfully installed on the existing Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometer. However, operation of this laser ablation source has only generated metal atom ions, no clusters have been found to date. It is believed that this is due to the design of the pulsed-nozzle/laser vaporization chamber. The final experimental configuration and design of the two source housings are described.

More Details

Defect-free thin film membranes for H2 separation and isolation

Nenoff, T.M.; Abraham, Ion C.; Thornberg, Steven M.; Hunka, Deborah E.; Jarek, Russell L.

There is a great need for robust, defect-free, highly selective molecular sieve (zeolite) thin film membranes for light gas molecule separations in hydrogen fuel production from CH{sub 4} or H{sub 2}O sources. In particular, we are interested in (1) separating and isolating H{sub 2} from H{sub 2}O and CH{sub 4}, CO, CO{sub 2}, O{sub 2}, N{sub 2} gases; (2) water management in PEMs and (3) as a replacement for expensive Pt catalysts needed for PEMs. Current hydrogen separation membranes are based on Pd alloys or on chemically and mechanically unstable organic polymer membranes. The use of molecular sieves brings a stable (chemically and mechanically stable) inorganic matrix to the membrane [1-3]. The crystalline frameworks have 'tunable' pores that are capable of size exclusion separations. The frameworks are made of inorganic oxides (e.g., silicates, aluminosilicates, and phosphates) that bring different charge and electrostatic attraction forces to the separation media. The resultant materials have high separation abilities plus inherent thermal stability over 600 C and chemical stability. Furthermore, the crystallographically defined (<1 {angstrom} deviation) pore sizes and shapes allow for size exclusion of very similarly sized molecules. In contrast, organic polymer membranes are successful based on diffusion separations, not size exclusion. We envision the impact of positive results from this project in the near term with hydrocarbon fuels, and long term with biomass fuels. There is a great need for robust, defect-free, highly selective molecular sieve (zeolite) thin film membranes for light gas molecule separations in hydrogen fuel production from CH{sub 4} or H{sub 2}O sources. They contain an inherent chemical, thermal and mechanical stability not found in conventional membrane materials. Our goal is to utilize those zeolitic qualities in membranes for the separation of light gases, and to eventually partner with industry to commercialize the membranes. To date, we have successfully: (1) Demonstrated (through synthesis, characterization and permeation testing) both the ability to synthesize defect-free zeolitic membranes and use them as size selective gas separation membranes; these include aluminosilicates and silicates; (2) Built and operated our in-house light gas permeation unit; we have amended it to enable testing of H{sub 2}S gases, mixed gases and at high temperatures. We are initiating further modification by designing and building an upgraded unit that will allow for temperatures up to 500 C, steady-state vs. pressure driven permeation, and mixed gas resolution through GC/MS analysis; (3) Have shown in preliminary experiments high selectivity for H{sub 2} from binary and industrially-relevant mixed gas streams under low operating pressures of 16 psig; (4) Synthesized membranes on commercially available oxide and composite disks (this is in addition to successes we have in synthesizing zeolitic membranes to tubular supports [9]); and (5) Signed a non-disclosure agreement with industrial partner G. E. Dolbear & Associates, Inc., and have ongoing agreements with Pall Corporation for in-kind support supplies and interest in scale-up for commercialization.

More Details

Energy Efficient Catalytic Reaction and Production of Cumene

Jarek, Russell L.; Thornberg, Steven M.; Trudell, Daniel E.; Nenoff, T.M.

Alkylation reactions of benzene with propylene using zeolites were studied for their affinity for cumene production. The current process for the production of cumene involves heating corrosive acid catalysts, cooling, transporting, and distillation. This study focused on the reaction of products in a static one-pot vessel using non-corrosive zeolite catalysts, working towards a more efficient one-step process with a potentially large energy savings. A series of experiments were conducted to find the best reaction conditions yielding the highest production of cumene. The experiments looked at cumene formation amounts in two different reaction vessels that had different physical traits. Different zeolites, temperatures, mixing speeds, and amounts of reactants were also investigated to find their affects on the amount of cumene produced. Quantitative analysis of product mixture was performed by gas chromatography. Mass spectroscopy was also utilized to observe the gas phase components during the alkylation process.

More Details
28 Results
28 Results