Streaked Visible Spectroscopy of Power Flow Surface Plasmas: Anodes Cathodes Convolutes and Loads
Abstract not provided.
Abstract not provided.
Abstract not provided.
This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with the calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Astrophysical Journal
We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, ne, and n = 2 level population, n2. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from ne ∼ 4 to ∼30 × 1016 cm-3 throughout a 120-ns evolution of our plasma. Also, we observe n2 to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ∼55 ns to become consistent with LTE. This supports our electron-temperature determination of Te ∼ 1.3 eV (∼15,000 K) after this time. At ne 1017 cm-3, we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ2) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Plan to submit to: Review of Scientific Instruments
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.