Publications

Results 1–25 of 107
Skip to search filters

A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph

Lab on a Chip

Whiting, Joshua J.; Myers, Edward; Manginell, Ronald P.; Moorman, Matthew W.; Anderson, John M.; Fix, Cory S.; Washburn, Cody M.; Staton, Al; Porter, Daniel; Graf, Darin; Wheeler, David R.; Howell, Stephen; Richards, John R.; Monteith, Haley; Achyuthan, Komandoor A.; Roukes, Michael; Simonson, Robert J.

A small, consumable-free, low-power, ultra-high-speed comprehensive GC×GC system consisting of microfabricated columns, nanoelectromechanical system (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator is demonstrated. The separation of a highly polar 29-component mixture covering a boiling point range of 46 to 253 °C on a pair of microfabricated columns using a Staiger valve manifold in less than 7 seconds, and just over 4 seconds after the ensemble holdup time is demonstrated with a downstream FID. The analysis time of the second dimension was 160 ms, and peak widths in the second dimension range from 10-60 ms. A peak capacity of just over 300 was calculated for a separation of just over 6 s. Data from a continuous operation testing over 40 days and 20000 runs of the GC×GC columns with the NEMS resonators using a 4-component test set is presented. The GC×GC-NEMS resonator system generated second-dimension peak widths as narrow as 8 ms with no discernable peak distortion due to under-sampling from the detector.

More Details

Thermodynamic studies on a hydrogen bonded acidic 3,5-Bis(trifluoromethyl)phenol-functionalized polymer as a gas chromatography stationary phase for selectively speciating chemical warfare agents

Analytical Sciences

Read, Douglas R.; Achyuthan, Komandoor A.; Fix, Cory S.; Manginell, Ronald P.; Moorman, Matthew W.; Simonson, Robert J.; Wheeler, David R.; Whiting, Joshua J.

We describe for the first time hydrogen bonded acid (HBA) polymer, poly[methyl[3-(2-hydroxyl, 4,6-bistrifluoromethyl)- phenyl]propylsiloxane], (DKAP), as stationary phase for gas chromatography (μGC) of organophosphate (OP), chemical warfare agent (CWA) surrogates, dimethylmethylphosphonate (DMMP), diisopropylmethylphosphonate (DIMP), diethylmethylphosphonate (DEMP), and trimethylphosphate (TMP), with high selectivity. Absorption of OPs to DKAP was one-to-several orders of magnitude higher relative to commercial polar, mid-polar, and nonpolar stationary phases. We also present for the first-time thermodynamic studies on the absorption of OP vapors and quantitative binding energy data for interactions with various stationary phases. These data help to identify the best pair of hetero-polar columns for a two-dimensional GC system, employing a nonpolar stationary phase as GC1 and DKAP as the GC2 stationary phase, for selective and rapid field detection of CWAs.

More Details

μchemLab: Twenty years of developing CBRNE detection systems with low false alarm rates

Proceedings of SPIE - The International Society for Optical Engineering

Whiting, Joshua J.; Myers, Edward B.; Manginell, Ronald P.; Moorman, Matthew W.; Pfeifer, Kent B.; Anderson, John M.; Fix, Cory S.; Washburn, Cody M.; Staton, Alan; Porter, Daniel; Graf, Darin; Wheeler, David R.; Richards, John R.; Achyuthan, Komandoor A.; Roukes, Michael; Simonson, Robert J.

Gas Chromatography (GC) is routinely used in the laboratory to temporally separate chemical mixtures into their constituent components for improved chemical identification. This paper will provide a overview of more than twenty years of development of one-dimensional field-portable micro GC systems, highlighting key experimental results that illustrate how a reduction in false alarm rate (FAR) is achieved in real-world environments. Significantly, we will also present recent results on a micro two-dimensional GC (micro GCxGC) technology. This ultra-small system consists of microfabricated columns, NanoElectroMechanical System (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator. The separation of a 29-component polar mixture in less than 7 seconds is demonstrated along with peak widths in the second dimension ranging from 10-60 ms. For this system, a peak capacity of just over 300 was calculated for separation in about 6 s. This work has important implications for field detection, to drastically reduce FAR and significantly improve chemical selectivity and identification. This separation performance was demonstrated with the NEMS resonator and bench scale FID. But other detectors, suitably fast and sensitive can work as well. Recent research has shown that the identification power of GCxGC-FID can match that of GC-MS. This result indicates a path to improved size, weight, power, and performance in micro GCxGC systems outfitted with relatively non-specific, lightweight detectors. We will briefly discuss the performance of possible options, such as the pulsed discharge helium ionization detector (PDHID) and miniature correlation ion mobility spectrometer (mini-CIMS).

More Details

All-electrical universal control of a double quantum dot qubit in silicon MOS

Technical Digest - International Electron Devices Meeting, IEDM

Harvey-Collard, Patrick; Jock, Ryan M.; Jacobson, Noah T.; Baczewski, Andrew D.; Mounce, Andrew M.; Curry, Matthew J.; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald P.; Wendt, J.R.; Rudolph, Martin R.; Pluym, Tammy P.; Lilly, Michael L.; Pioro-Ladrière, Michel; Carroll, Malcolm

Qubits based on transistor-like Si MOS nanodevices are promising for quantum computing. In this work, we demonstrate a double quantum dot spin qubit that is all-electrically controlled without the need for any external components, like micromagnets, that could complicate integration. Universal control of the qubit is achieved through spin-orbit-like and exchange interactions. Using single shot readout, we show both DC- and AC-control techniques. The fabrication technology used is completely compatible with CMOS.

More Details

Ion implantation for deterministic single atom devices

Review of Scientific Instruments

Pacheco, Jose L.; Singh, M.; Perry, Daniel L.; Wendt, J.R.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Pluym, Tammy P.; Luhman, Dwight R.; Lilly, M.P.; Carroll, Malcolm; Bielejec, E.

We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

More Details
Results 1–25 of 107
Results 1–25 of 107