Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.
The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.
This report documents the status of the Sandia National Laboratories' Wind Plant Reliability Database. Included in this report are updates on the form and contents of the Database, which stems from a fivestep process of data partnerships, data definition and transfer, data formatting and normalization, analysis, and reporting. Selected observations are also reported.
The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.
The U.S. Department of Energy's (DOE's) GeoPowering the West (GPW) program works with the U.S. geothermal industry, power companies, industrial and residential consumers, and federal, state, and local officials to provide technical and institutional support and limited, cost-shared funding to state-level activities. By demonstrating the benefits of geothermal energy, GPW increases state and regional awareness of opportunities to enhance local economies and strengthen our nation's energy security while minimizing environmental impact. By identifying barriers to development and working with others to eliminate them, GPW helps a state or region create a regulatory and economic environment that is more favorable for geothermal and other renewable energy development. Electricity is produced using expanding steam or very hot water from the underground reservoir to spin a conventional turbine-generator. Geothermal power plants operate at high capacity factors (70-100%), with availability factors typically greater than 95%. Geothermal plants are among the cleanest sources of electric power available. Direct use applications directly pipe hot water from geothermal resources to provide heat for industrial processes, crop drying, greenhouses, aquaculture, recreation, sidewalk snow-melting, and buildings. Geothermal district heating systems supply heat to multiple buildings through a network of pipes carrying the hot geothermal water.
The implementation of GeoPowering the West (GPW), a communication and outreach component of the Department of Energy (DOE) to bring geothermal heat and power to homes and business across the West was discussed. GPQ helps to overcome financial risks, environmantal misconceptions, transactional costs, creates public awareness and define the benefits of geothermal development. The GPW complements the research and development activities conducted by the department and its national laboratories. It was stated that the GPW will continue to provide technical assistance to states that are considering to implement Renewable energy policies.