Modulus/density scaling behavior and framework architecture of nanoporous self-assembled silicas
Nature Materials
Abstract not provided.
Nature Materials
Abstract not provided.
Radiation Physics and Chemistry
Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation. © 2006 Elsevier Ltd. All rights reserved.
Polymer Degradation and Stability
Abstract not provided.
Abstract not provided.
Proposed for publication in Nuclear Instruments and Methods in Physics Research B.
Abstract not provided.
Abstract not provided.
Polymer Degradation and Stability
Lifetime prediction of polymeric materials often requires extrapolation of accelerated aging data with the suitability and confidence in such approaches being subject to ongoing discussions. This paper reviews the evidence of non-Arrhenius behaviour (curvature) instead of linear extrapolations in polymer degradation studies. Several studies have emphasized mechanistic variations in the degradation mechanism and demonstrated changes in activation energies but often data have not been fully quantified. To improve predictive capabilities a simple approach for dealing with curvature in Arrhenius plots is examined on a basis of two competing reactions. This allows for excellent fitting of experimental data as shown for some elastomers, does not require complex kinetic modelling, and individual activation energies are easily determined. Reviewing literature data for the thermal degradation of polypropylene a crossover temperature (temperature at which the two processes equally contribute) of ∼83 °C was determined, with the high temperature process having a considerably higher activation energy (107-156 kJ/mol) than the low temperature process (35-50 kJ/mol). Since low activation energy processes can dominate at low temperatures and longer extrapolations result in larger uncertainties in lifetime predictions, experiments focused on estimating Ea values at the lowest possible temperature instead of assuming straight line extrapolations will lead to more confident lifetime estimates. © 2005 Elsevier Ltd. All rights reserved.
Abstract not provided.
Polymer
The use of a respirometer is introduced as a novel technique for measuring the oxidation rates of thermally degrading polymers. A dual channel respirometer with fuel cell detectors demonstrates sufficient sensitivity to measure the oxidation rates of low-density polymeric samples at ambient temperatures in a relatively short period of time. Samples of low-density polyurethane foam were aged for various lengths of time in sealed chambers at temperatures ranging from 23 to 110 °C. The extent of oxygen depletion was measured by flushing the chamber with air and comparing the oxygen concentration in the chamber flow to that of a reference flow. Oxidation rates of the 0.1 g/cm3 polyurethane foam could be measured in less than 600 h of aging time at 23 °C. This corresponds to approximately 2 ppm oxidation by weight. Oxidation rates of the foam were used to calculate acceleration factors over a wide temperature range, including ambient conditions. Acceleration factors for the compressive force of the polyurethane foam were determined at elevated temperatures. Assuming that the aging behavior of compressive force of the foam is correlated to its oxidation rate, it is possible to calculate acceleration factors for the compressive force and predict the performance of the foam at ambient temperatures. © 2005 Elsevier Ltd. All rights reserved.
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.
This report summarizes results generated on a 5-year cable-aging program that constituted part of the Nuclear Energy Plant Optimization (NEPO) program, an effort cosponsored by the U. S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The NEPO cable-aging effort concentrated on two important issues involving the development of better lifetime prediction methods as well as the development and testing of novel cable condition-monitoring (CM) techniques. To address improved life prediction methods, we first describe the use of time-temperature superposition principles, indicating how this approach improves the testing of the Arrhenius model by utilizing all of the experimentally generated data instead of a few selected and processed data points. Although reasonable superposition is often found, we show several cases where non-superposition is evident, a situation that violates the constant acceleration assumption normally used in accelerated aging studies. Long-term aging results over extended temperature ranges allow us to show that curvature in Arrhenius plots for elongation is a common occurrence. In all cases the curvature results in a lowering of the Arrhenius activation energy at lower temperatures implying that typical extrapolation of high temperature results over-estimates material lifetimes. The long-term results also allow us to test the significance of extrapolating through the crystalline melting point of semi-crystalline materials. By utilizing ultrasensitive oxygen consumption (UOC) measurements, we show that it is possible to probe the low temperature extrapolation region normally inaccessible to conventional accelerated aging studies. This allows the quantitative testing of the often-used Arrhenius extrapolation assumption. Such testing indicates that many materials again show evidence of ''downward'' curvature (E{sub a} values drop as the aging temperature is lowered) consistent with the limited elongation results and many literature results. It is also shown how the UOC approach allows the probing of temperatures that cross through the crystalline melting point region of semi-crystalline materials such as XLPO and EPR cable insulations. New results on combined environment aging of neoprene and hypalon cable jacketing materials are presented and offer additional evidence in support of our time-temperature-dose rate (t-T-DR) superposition approach that had been used successfully in the past for such situations.
Proposed for publication in an IAEA Techdoc.
Abstract not provided.
Abstract not provided.
Smart polymeric materials, such as piezoelectric polymers which deform by application of an electric field, are of interest for use in controllable mirrors as large, lightweight space optics. An important consideration when using any organic material in a space application is their extreme vulnerability to the space environment. In LEO the presence of atomic oxygen, large thermal extremes, hard vacuum, short wavelength ultraviolet and particulate radiation can result in erosion, cracking and outgassing of most polymers. While much research has been performed examining the physical and chemical changes incurred by polymers exposed to actual and simulated LEO environments, little work has focused on the effects of the space environment on the performance of piezoelectric polymers. The most widely used piezoelectric polymers are those based on poly(vinylidene fluoride) (PVDF) and include copolymers synthesized from vinylidene fluoride and trifluoroethylene, hexafluoropropylene or chlorotrifluoroethylene. The presence of a comonomer group can greatly influence on the crystalline phase, melting point, Curie point, modulus and processing required for piezoelectricity. After a rigorous pre-selection process only two polymers, namely the PVDF homopolymer and a TrFE copolymer (80% comonomer content), satisfied most of the requirements for operation in the temperature/radiation environment of LEO. Based on this initial materials selection, we have now performed a detailed study of the effects of temperature, atomic oxygen and vacuum UV radiation simulating low Earth orbit conditions on these two polymers. Both polymers exhibited diminished but very stable piezoelectric performance up to 130 C despite the upper use temperatures suggested by industry of 80 C (PVDF) and 100 C (P(VDF-TrFE)). We believe that the loss of piezoelectric response in samples conditioned at 130 C compared with non-exposed samples is partly due to the depoling process which occurs when the highly stressed films undergo contraction via relaxation. The TrFE copolymer, which does not need to be stretched for the polar phase to be present, has better retention of piezoelectric properties at 130 C compared with the highly oriented homopolymer. AO/VUV exposure caused significant surface erosion and pattern development for both polymers. Erosion yields were 2.8 x 10{sup -24} cm{sup 3}/atom for PVDF and 2.5 x 10{sup -24} cm{sup 3}/atom for P(VDF-TrFE). The piezoelectric properties of the residual material for both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly crosslinked network was formed in the copolymer, presumably due to penetrating VUV radiation, while the homopolymer remained uncrosslinked. These differences were attributed to different levels of crystallinity and increased VUV absorption by P(VDF-TrFE) over PVDF. In this paper a summary of the performance limiting effects of temperature, radiation, atomic oxygen and VUV on the piezoelectric response of PVDF based polymers will be presented.
Smart polymeric materials, such as piezoelectric polymers which deform by application of an electric field, are of interest for use in controllable mirrors as large, lightweight space optics. An important consideration when using any organic material in a space application is their extreme vulnerability to the space environment. In LEO the presence of atomic oxygen, large thermal extremes, hard vacuum, short wavelength ultraviolet and particulate radiation can result in erosion, cracking and outgassing of most polymers. While much research has been performed examining the physical and chemical changes incurred by polymers exposed to actual and simulated LEO environments, little work has focused on the effects of the space environment on the performance of piezoelectric polymers. The most widely used piezoelectric polymers are those based on poly(vinylidene fluoride) (PVDF) and include copolymers synthesized from vinylidene fluoride and trifluoroethylene, hexafluoropropylene or chlorotrifluoroethylene. The presence of a comonomer group can greatly influence on the crystalline phase, melting point, Curie point, modulus and processing required for piezoelectricity. After a rigorous pre-selection process only two polymers, namely the PVDF homopolymer and a TrFE copolymer (80% comonomer content), satisfied most of the requirements for operation in the temperature/radiation environment of LEO. Based on this initial materials selection, we have now performed a detailed study of the effects of temperature, atomic oxygen and vacuum UV radiation simulating low Earth orbit conditions on these two polymers. Both polymers exhibited diminished but very stable piezoelectric performance up to 130 C despite the upper use temperatures suggested by industry of 80 C (PVDF) and 100 C (P(VDF-TrFE)). We believe that the loss of piezoelectric response in samples conditioned at 130 C compared with non-exposed samples is partly due to the depoling process which occurs when the highly stressed films undergo contraction via relaxation. The TrFE copolymer, which does not need to be stretched for the polar phase to be present, has better retention of piezoelectric properties at 130 C compared with the highly oriented homopolymer. AO/VUV exposure caused significant surface erosion and pattern development for both polymers. Erosion yields were 2.8 x 10{sup -24} cm{sup 3}/atom for PVDF and 2.5 x 10{sup -24} cm{sup 3}/atom for P(VDF-TrFE). The piezoelectric properties of the residual material for both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly crosslinked network was formed in the copolymer, presumably due to penetrating VUV radiation, while the homopolymer remained uncrosslinked. These differences were attributed to different levels of crystallinity and increased VUV absorption by P(VDF-TrFE) over PVDF. In this paper a summary of the performance limiting effects of temperature, radiation, atomic oxygen and VUV on the piezoelectric response of PVDF based polymers will be presented.
Abstract not provided.
An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose-rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Solid-state {sup 1}H NMR relaxometry studies were conducted on a hydroxy-terminated polybutadiene (HTPB) based polyurethane elastomer thermo-oxidatively aged at 80 C. The {sup 1}H T{sub 1}, T{sub 2}, and T{sub 1{rho}} relaxation times of samples thermally aged for various periods of time were determined as a function of NMR measurement temperature. The response of each measurement was calculated from a best-fit linear function of the relaxation time vs. aging time. It was found that the T{sub 2,H} and T{sub 1{rho},H} relaxation times exhibited the largest response to thermal degradation, whereas T{sub 1,H} showed minimal change. All of the NMR relaxation measurements on solid samples showed significantly less sensitivity to thermal aging than the T{sub 2,H} relaxation times of solvent-swollen samples.
Abstract not provided.
Abstract not provided.
Polymer Degradation and Stability
In this paper we examine the utility of several promising material condition monitoring (CM) techniques applied to a commercial polychloroprene cable jacketing material used in nuclear power plant applications. These include two relatively unknown approaches, cross-sectional modulus profiling and NMR T2 relaxation time measurements of solvent-swelled samples, as well as three more commonly used approaches, density, gel fraction and solvent uptake. The results from each approach were compared to tensile elongation measurements, the usual standard approach for monitoring degradation of elastomers. Degradation was carried out at three temperatures and at four combined radiation plus thermal environments, all of which were selected (by theoretical modeling and later confirmed by cross-sectional degradation mapping) such that oxidation proceeded uniformly throughout the cross-section of the material. This allowed macroscopic condition monitoring measurements to be made in the absence of anomalous diffusion-limited oxidation effects. Of the techniques examined, modulus profiling, solvent uptake and NMR T2 measurements correlated extremely well with the elongation measurements and therefore showed substantial potential as CM approaches for this material. This is not unexpected since all of these techniques are sensitive to crosslinking of the material and the deterioration of the elongation is itself dominated by material hardening and thus by crosslinking. Published by Elsevier Ltd.
Abstract not provided.
Proposed for publication in Langmuir.
Abstract not provided.
Thin polymer films have been identified as one of the major enabling technologies for future space-based systems. Potential devices include those based on piezoelectric bimorph polymers that deform when a charge is deposited, for example, from an electron gun. The thin-film and lightweight nature of the polymeric devices will allow them to be launched more readily and deployed to operating conditions once in orbit. Until now little work has been done aimed at investigating the performance of piezoelectric properties of PVDF and its copolymers and the prediction of their long-term stability in low Earth orbit (LEO) environmental conditions. In this paper, the piezoelectric properties of PVDF and the copolymers formed from polymerization of vinylidene fluoride and trifluoroethylene (TrFE) or hexafluoropropylene (HFP) have been studied over a broad temperature range simulating that expected in LEO. The temperatures experienced by unprotected polymers on low altitude spacecraft have previously been reported as ranging from approximately -100 C to +130 C as the polymer/spacecraft passes in and out of the Earth's shadow. To examine the effects of temperature on the piezoelectric properties of poled PVDF, P(VDF-TrFE) and P(VDF-HFP) the d{sub 33} piezoelectric coefficients and electric displacement-electric field (D-E) hysteresis loops were measured up to 160 C for the d{sub 33} measurements and from -80 to +110 C for the D-E loops. The room temperature d{sub 33} coefficient of PVDF homopolymer films, annealed for extended periods at 50, 80 and 125 C, dropped rapidly within a few days of heating, then remained unchanged for periods of up to 300 days. In contrast, the TrFE copolymer exhibited greater thermal stability than the homopolymer, with the d{sub 33} remaining almost unchanged from the pre-annealing value after heating at 50, 80 and 125 C. The HFP copolymer exhibited poor retention of d33 at temperatures above 80 C. For all three polymers short term annealing at 160 C reduced the d{sub 33} to zero. The decrease in d{sub 33} for the TrFE copolymer was correlated with the change in Curie temperature upon annealing of the copolymer, as observed by differential scanning calorimetry (DSC). Unlike radiation damage, which may occur from vacuum UV and atomic oxygen in LEO, the depoling of the polymers on exposure to elevated temperatures was attributed to a physical randomization of the morphology rather than a chemical degradation process. In situ D-E loop measurements over the temperature range -80 to +110 C showed that the remnant polarization of the TrFE copolymer was more stable than the PVDF homopolymer. These results suggest that the TrFE copolymer appears to have a better overall performance in thermal extremes compared with PVDF or an HFP copolymer.
Abstract not provided.
Radiation Physics and Chemistry
The γ-irradiated-oxidation of pentacontane (C50H102) and the polymer polyisoprene was investigated as a function of oxidation level using 17O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17O labeled O2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches. © 2001 Elsevier Science Ltd.
Abstract not provided.
Abstract not provided.
Journal of Applied Polymer Science
A hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) elastomer is commonly used as propellant binder material. The thermal degradation of the binder is believed to be an important parameter governing the performance of the propellant. The aging of these binders can be monitored by mechanical property measurements such as modulus or tensile elongation. These techniques, however, are not easily adapted to binder agents that are dispersed throughout a propellant. In this paper the authors investigated solid state NMR relaxation times as a means to predict the mechanical properties of the binder as a function of aging time. {sup 1}H spin-lattice and spin-spin relaxation times were found to be insensitive to the degree of thermal degradation of the elastomer. Apparently these relaxation times depend on localized motions that are only weakly correlated with mechanical properties. A strong correlation was found between the {sup 13}C cross-polarization (CP) NMR time constant, T{sub cp}, and the tensile elongation at break of the elastomer as a function of aging time. A ramped-amplitude CP experiment was shown to be less sensitive to imperfections in setting critical instrumental parameters for this mobile material.
Abstract not provided.
The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.
Journal of the American Chemical Society
We report an evaporation-induced self-assembly procedure to prepare poly(bridged silsesquioxane) thin-film and particulate mesophases that incorporate organic moieties (1-3) into periodic, mesostructured frameworks as molecularly dispersed bridging ligands. Capacitance-voltage measurements along with a variety of structural characterization procedures were performed to begin to elucidate structure-property relationships of this new class of surfactant-templated mesophases. We observed a consistent trend of increasing modulus and hardness and decreasing dielectric constant with substitution of the bridged silsesquioxane (≡Si-(CH2)2-Si≡) for siloxane (≡Si-O-Si≡) in the framework. This preliminary evidence suggests that the introduction of integral organic groups into the frameworks of mesoporous materials can result in synergistic properties, promising an unprecedented ability to tune properties and function.
American Chemical Society, Polymer Preprints, Division of Polymer Chemistry
Oligomethylhydridosiloxane and tis copolymer with dimethylsiloxane undergo redistribution chemistry with catalytic tetrabutylammonium hydroxide (TBAH) to produce methylsilane and polymethylsilsesquioxanes. The rate and extent of redistribution reaction can be controlled by the amount of TBAH added, as well as use of solvent. The extent reaction can be followed by both infrared radiation (IR) and solid state NMR spectroscopy, following the disappearance of the SiH in the starting oligosiloxane.
Materials Research Society Symposium - Proceedings
Abstract not provided.